分析 (1)欲證明AE⊥CD,只要證明OA∥CE即可.
(2)證明△ADE∽△BDA,可得BD=2AD,∠ABD=30°,利用AD⊥AF,即可求∠BFC的大。
解答 (1)證明:連接OA,則OA=OD,
∴∠OAD=∠ODA,
∵∠ODA=∠ADE,
∴∠OAD=∠ADE,
∴OA∥CE,
∵AE是⊙O切線,
∴CE⊥AE,
∴AE⊥CD.
(2)解:由(1)可得△ADE∽△BDA,
∴$\frac{AE}{AD}=\frac{AB}{BD}$,
∴$\frac{2}{AD}=\frac{4}{BD}$,
∴BD=2AD,
∴∠ABD=30°,
∴∠DAE=30°,
∵AD⊥AF,
∴∠BFC=30°.
點(diǎn)評(píng) 本題考查切線的性質(zhì)、三角形的相似等知識(shí),解題的關(guān)鍵是熟練掌握切線的性質(zhì),學(xué)會(huì)添加常用輔助線,屬于?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2014 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2015 | B. | 2016 | C. | 1008 | D. | $\frac{2015}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com