(本題滿分14分)設(shè)函數(shù),
(1)求函數(shù)的最大值和最小正周期;
(2)設(shè)為的三個(gè)內(nèi)角,若,且為銳角,求的值。
(1); ;
(2)
【解析】本試題主要是考查了三角函數(shù)的性質(zhì)和周期公式、單調(diào)性的運(yùn)用,以及解三角形中兩個(gè)定理的運(yùn)用。
(1)將化為單一三角函數(shù),然后利用周期公式和單調(diào)區(qū)間得到結(jié)論。
(2)根據(jù)第一問,而得到,從而得到又,運(yùn)用B表示角A的函數(shù)值得到結(jié)論。
解:(1)由
………………………………………………..5分
……..6分
,最小正周期……..7分
(2) ……..8分
, 又為銳角,……..10分[來(lái)源:Zxxk.Com]
又,……..11分
…………………………………………………...14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)
設(shè)函數(shù),。
(1)若,過兩點(diǎn)和的中點(diǎn)作軸的垂線交曲線于點(diǎn),求證:曲線在點(diǎn)處的切線過點(diǎn);
(2)若,當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時(shí),用數(shù)學(xué)歸納法證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1與
F2,直線過橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長(zhǎng)為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題
(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足”
(I)證明:函數(shù)是集合M中的元素;
(II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題
本題滿分14分)
設(shè)函數(shù).
(1)若,求函數(shù)的極值;
(2)若,試確定的單調(diào)性;
(3)記,且在上的最大值為M,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com