2.已知函數(shù)f(x)=logax+b(a>0,a≠1)的定義域、值域都是[1,2],則a+b=$\frac{5}{2}$或3.

分析 分類(lèi)討論a的取值范圍,得到函數(shù)單調(diào)性,代入數(shù)據(jù)即可求解.

解答 解:當(dāng)0<a<1時(shí),易知函數(shù)f(x)為減函數(shù),
由題意有$\left\{\begin{array}{l}{f(1)=b=2}\\{f(2)=lo{g}_{a}2+b=1}\end{array}\right.$解得:a=$\frac{1}{2}$,b=2,符合題意,此時(shí)a+b=$\frac{5}{2}$;
當(dāng)a>1時(shí),易知函數(shù)為增函數(shù),由題意有$\left\{\begin{array}{l}{f(1)=b=1}\\{f(2)=lo{g}_{a}2+b=2}\end{array}\right.$,
解得:a=2,b=1,符合題意,此時(shí)a+b=3.
綜上可得:a+b的值為$\frac{5}{2}$或3.
故答案為:$\frac{5}{2}$或3.

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的性質(zhì)以及分類(lèi)討論的思想方法.分類(lèi)討論函數(shù)的單調(diào)性是正確解決本題關(guān)鍵.屬于易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)命題p:函數(shù)f(x)=lg(-mx2+2x-m)的定義域?yàn)镽;
命題q:函數(shù)g(x)=4lnx+$\frac{1}{2}{x^2}$-(m-1)x的圖象上任意一點(diǎn)處的切線(xiàn)斜率恒大于2,
若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在數(shù)列{an}中,a1=1an+1=$\frac{2(n+1)}{n}{a_n}$,n∈N*.
(1)求證數(shù)列$\left\{{\frac{a_n}{n}}\right\}$為等比數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知三棱錐S-ABC的各項(xiàng)頂點(diǎn)都在一個(gè)表面積為4π的球表面上,球心O在AB上,SO⊥平面ABC,AC=$\sqrt{2}$,則三棱錐S-ABC的表面積為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=$\sqrt{4-x}$+lg(x-1)+(x-3)0 的定義域?yàn)椋ā 。?table class="qanwser">A.{x|1<x≤4}B.{x|1<x≤4且x≠3}C.{x|1≤x≤4且x≠3}D.{x|x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若函數(shù)f(x)=Asin(ωx+φ)(A)>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$的部分圖象如圖所示,B,C分別是圖象的最低點(diǎn)和最高點(diǎn),
其中|BC|=$\sqrt{\frac{{π}^{2}}{4}+16}$.
(I)求函數(shù)f(x)的解析式;
(II)在銳角△ABC中,a,b,c分別是角A、B、C的對(duì)邊,若f(A)=$\sqrt{3}$,a=2,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)的反函數(shù)為y=3x(x∈R),則f(x)=log3x(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.以下五個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①雙曲線(xiàn)$\frac{x^2}{16}-\frac{y^2}{9}$=1與橢圓$\frac{x^2}{49}+\frac{y^2}{24}$=1有相同的焦點(diǎn);
②方程2x2-3x+1=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
③設(shè)A、B為兩個(gè)定點(diǎn),K為常數(shù),若|PA|-|PB|=K,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn)的一支;
④過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)作直線(xiàn)與拋物線(xiàn)相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和等于5的直線(xiàn)有且只有兩條;
⑤雙曲線(xiàn)x2-y2=1的頂點(diǎn)到其漸近線(xiàn)的距離等于$\frac{{\sqrt{2}}}{2}$.
其中真命題的序號(hào)為①④⑤(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A,B,C中,A⊆B,A⊆C,若B={0,1,2,3},C={0,2,4},則A的子集最多有( 。
A.2個(gè)B.4個(gè)C.6個(gè)D.8個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案