下列各組向量不平行的是( 。
A、
a
=(1,0,0),
b
=(-3,0,0)
B、
a
=(0,1,0),
b
=(1,0,1)
C、
a
=(0,1,-1),
b
=(0,-1,1)
D、
a
=(1,0,0),
b
=(0,0,0)
考點:向量的數(shù)量積判斷向量的共線與垂直
專題:空間位置關(guān)系與距離
分析:利用向量共線定理即可判斷出.
解答: 解:A.
b
=-3
a
,因此
a
b

B.不存在實數(shù)λ使得
b
a
a
b
,因此
a
b
不平行;
C.
b
=-
a
,因此
a
b
;
D.
b
=0•
a
,因此
a
b

故選:B.
點評:本題考查了向量共線定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,定義兩點P(x1,yl),Q(x2,y2)之間的“直角距離為d(P,Q)=|x1-x2|+|y1-y2|.
現(xiàn)有以下命題:
①若P,Q是x軸上兩點,則d(P,Q)=|x1-x2|;
②已知兩點P(2,3),Q(sin2α,cos2α),則d(P,Q)為定值;
③原點O到直線x-y+l=0上任意一點P的直角距離d(O,P)的最小值為
2
2
;
④若|PQ|表示P、Q兩點間的距離,那么|PQ|≥
2
2
d(P,Q);
其中為真命題的是
 
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中,不是公理的是( 。
A、如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
B、過不在同一直線上的三點,有且只有一個平面
C、如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在此平面內(nèi)
D、平行于同一個平面的兩個平面相互平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將各項均為正數(shù)的數(shù)列{an}排成如圖所示的三角形數(shù)陣(第n行有n個數(shù),同一行下標(biāo)小的排在左邊).bn表示數(shù)陣中第n行第1列的數(shù).
已知數(shù)列{bn}為等比數(shù)列,且從第3行開始,各行均構(gòu)成公差為d的等差數(shù)列,a1=1,a12=17,a18=34.
(1)求數(shù)陣中第m行第n列(m,n∈N+且m≥3,n≤m)的數(shù)Amn(用m,n表示);
(2)試問a2015處在數(shù)陣中第幾行第幾列?
(3)試問這個數(shù)列中是否有2015這個數(shù)?有求出具體位置,沒有說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

又曲線
y2
64
-
x2
36
=1上一點P到它的一個焦點的距離等于3,那么點P與兩個焦點所構(gòu)成三角形的周長等于( 。
A、42B、36C、28D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-
1
2
,
3
2
),
OA
=
a
-
b
OB
=
a
+
b
,若△OAB是以O(shè)為直角頂點的等腰直角三角形,則△AOB的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求證:
f(ab)
|a|
>f(
b
a
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從2014年到2017年期間,甲計劃每年6月6日都到銀行存入a元的一個定期儲蓄,若年利率q保持不變,且每年到期的存款本息均自動轉(zhuǎn)為新的一年定期儲蓄,若到2017年6月6日,甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是( 。┰
A、a(1+q)3
B、a(1+q)5
C、
a[(1+q)4-(1+q)]
q
D、
a[(1+q)5-(1+q)]
q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a4=4,則此數(shù)列的前7項和為
 

查看答案和解析>>

同步練習(xí)冊答案