已知某幾何體的三視圖如圖所示,則該幾何體的體積等于
 

考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:已知中的三視圖可知:該幾何體是以一個半圓柱和三棱柱組成的組合體,分別計算他們的體積,相加可得答案.
解答: 解:由三視圖可知:該幾何體是以一個半圓柱和三棱柱組成的組合體,
半圓柱的體積為:
1
2
π•12×2=π,
三棱柱的體積:
1
2
×2×
3
×2=2
3

該幾何體的體積等于:π+2
3

故答案為:π+2
3
點評:本題考查的知識點是由三視圖求體積,其中分析出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinα,1),
b
=(cosα,2),α∈(0,
π
4
).
(1)若
a
b
=
17
8
,求sinα-cosα的值;
(2)若
a
b
,又β為銳角,且tanβ=
1
3
,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-cosx-sinx,f′(x)是其導(dǎo)函數(shù).若命題“?x∈[
π
2
,π],f′(x)<a”是真命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=
3
x-
2
與圓x2+y2=2相交于A,B兩點,O為坐標(biāo)原點,則△OAB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式|x-a|+|x-2|>1的解集為全體實數(shù)R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(0,-3),B(4,0),點P是圓x2+y2-2y=0上任意一點,則△ABP面積的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)(x∈[-
π
6
,a]),若f(x)的值域是[-1,2],則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,-1},B={x∈R,|x2=1},則x∈A是x∈B的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
b
的模分別為6和5,夾角為120°,則|
a
+
b
|等于( 。
A、
2
3
B、-
2
3
C、
31
D、
91

查看答案和解析>>

同步練習(xí)冊答案