14.已知α∥β,直線AB分別交于A,B,直線CD分別交α,β于C,D,AB∩CD=S,AS=4,BS=6,CD=5,則SC=10或 2.

分析 作出圖形,利用平面與平面平行推出直線與直線平行,通過相似列出比例關(guān)系,求解即可.

解答 解:解:如圖,α∥β,直線AB分別交α,β于A,B,直線CD分別交α,β于C,D,AB與CD相交于α,β同側(cè)S,且AS=4,BS=10,CD=9,可知BD∥AC,
△SAC∽△SBD,
∴$\frac{SA}{SB}=\frac{SC}{SD}$,即$\frac{4}{6}=\frac{SC}{5+SC}$,
∴SC=10.
如圖(2),由α∥β知AC∥BD,

△SAC∽△SBD,
∴$\frac{SA}{SB}=\frac{SC}{SD}$,即$\frac{4}{6}=\frac{SC}{5-SC}$,
∴SC=2.
故答案為:10或2.

點評 本題考查平面與平面平行的性質(zhì),相似三角形的性質(zhì),容易疏忽兩種類型之一,是基礎題,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=$\sqrt{4-{x}^{2}}$+lg(x+1)的連續(xù)區(qū)間為(-1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.等差數(shù)列{an}中,公差d=2,a1+a3+a5+…+a29=18,則a2+a4+a6+…+a30=( 。
A.20B.36C.48D.52

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=$\sqrt{3}$,∠ABC=60°.
(1)證明:AB⊥A1C;
(2)(理)求二面角A-A1C-B的余弦值大。
(文)求此棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,A=45°,B=60°,a=$\sqrt{2}$,則b=( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,菱形ABCD的邊長為2,△BCD為正三角形,現(xiàn)將△BCD沿BD向上折起,折起后的點C記為C′,且CC′=$\sqrt{3}$,連接CC′,E為CC′的中點.
文科:(1)求證:AC′∥平面BDE;
(2)求證:CC′⊥平面BDE;
(3)求三棱錐C′-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,已知四棱錐P-ABCD中,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.
(1)證明:MN∥平面PAD;
(2)若PB與平面ABCD所成的角為45°,求三棱錐C-BDN的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知定義在R上的偶函數(shù)f(x),且在(0,+∞)單調(diào)遞減,如果實數(shù)t滿足$f(lnt)+f(ln\frac{1}{t})≤2f(1)$,求t的取值范圍$(0,\frac{1}{e}]∪[e,+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.對于集合M、N,定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),設M={y|y=x2-4x,x∈R},N={y|y=-2x,x∈R},則M⊕N=[0,+∞)∪(-∞,-4).

查看答案和解析>>

同步練習冊答案