3.已知x3-x7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,則a3=( 。
A.35B.36C.-34D.-33

分析 根據(jù)x3-x7=[1+(x-1)]3-[1+(x-1)]7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求得a3的值.

解答 解:已知x3-x7=[1+(x-1)]3-[1+(x-1)]7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,
則a3=${C}_{3}^{3}$-${C}_{7}^{3}$=-34,
故選:C.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.給出下列命題:
①已知集合M滿足∅?M⊆{1,2,3,4},且M中至多有一個(gè)偶數(shù),這樣的集合M有12個(gè);
②已知函數(shù)f(x)滿足條件:$f(x)+2f(\frac{1}{x})={log_2}x$,則f(2)等于-1;
③設(shè)A、B為非空集合,定義集合A+B={x|x∈A或x∈B且x∉A∩B},若$P=\{x|y=\sqrt{{x^2}-4x}\}$,Q={y|y=3x+1},則P+Q={x|x≤0或1<x≤4};
④如果函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,且f(x)=(x-2015)2+1(x≥0),則當(dāng)x<0時(shí),f(x)=(x+2015)2+1;
其中正確的命題的序號(hào)是②④(把所有正確的命題序號(hào)寫(xiě)在答題卷上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.奇函數(shù)f(x)在其定義域(-1,1)內(nèi)單調(diào)遞增,且f(1-a)+f(1-a2)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若a?α,b?β,則a與b的位置關(guān)系是平行、相交、異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.己知直線l:Ax+By+C=0(A,B不全為0),點(diǎn)P(x0,y0)在l上,則l的方程可化為( 。
A.A(x+x0)+B(y+y0)+C=0B.A(x+x0)+B(y+y0)=0C.A(x-x0)+B(y-y0)+C=0D.A(x-x0)+B(y-y0)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.己知三棱錐P-ABC中,PA⊥PB⊥PC,且PA=$\sqrt{3}$,PB=2,PC=3,則其外接球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若直線l與平面內(nèi)無(wú)數(shù)條直線垂直,則( 。
A.l?aB.l∥aC.l與a相交D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lg($\sqrt{{x}^{2}+1}$-x)
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=xlnx的單調(diào)減區(qū)間是(0,$\frac{1}{e}$),函數(shù)y=8x2-lnx的單調(diào)增區(qū)間是($\frac{1}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案