1.已知f(x)=xex,則曲線y=f(x)在點(0,0)處的切線方程為y=x.

分析 求得函數(shù)的導數(shù),可得切線的斜率,運用點斜式方程可得切線的方程.

解答 解:f(x)=xex的導數(shù)為f′(x)=(1+x)ex,
可得曲線y=f(x)在點(0,0)處的切線斜率為k=1,
則曲線y=f(x)在點(0,0)處的切線方程為y=x.
故答案為:y=x.

點評 本題考查導數(shù)的運用:求切線方程,考查導數(shù)的幾何意義,正確求導和運用直線方程是解題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.等比數(shù)列{an}中,q=2,a2+a5+…+a98=22,則數(shù)列{an}的前99項的和S99=(  )
A.100B.88C.77D.68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.函數(shù)f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-2cos(2ωx+π),其中ω>0.
(1)求函數(shù)y=f(x)的值域;
(2)若f(x)的最小正周期為π,求f(x)在區(qū)間[-$\frac{π}{2}$,π]上的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若動點A(x1,y2)、B(x2,y2)分別在直線l1:x+y-11=0和l2:x+y-1=0上移動,則AB中點M所在直線方程為(  )
A.x-y-6=0B.x+y+6=0C.x-y+6=0D.x+y-6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是( 。
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{2}{3}$,$\frac{4}{3}$]D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x-1}{x}$-lnx.
(1)求f(x)的遞增區(qū)間;
(2)證明:當x∈(0,1)時,x-1<xlnx;
(3)設c∈(0,1),證明:當x∈(0,1)時,1+(c-1)x>cx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,D,E分別是被BC,AB的中點,點F在棱CC1上,AB=BC=CA=CF=2,AA1=3,則下列說法正確的是( 。
A.設平面ADF與平面BEC1的交線為l,則直線C1E與l相交
B.在棱A1C1上存在點N,使得三棱錐N-ADF的體積為$\frac{\sqrt{3}}{7}$
C.設點M在BB1上,當BM=1時,平面CAM⊥平面ADF
D.在棱A1B1上存在點P,使得C1P⊥AF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.關于x的方程(2017-x)(1999+x)=2016恰有兩個根為x1、x2,且x1、x2分別滿足3x1=a-3x1和log3(x2-1)3=a-3x2,則x1+x2+a=61.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知數(shù)列{an},{bn}滿足a1=1且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個零點,則b9等于( 。
A.64B.48C.32D.24

查看答案和解析>>

同步練習冊答案