在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB=b.
(Ⅰ)求角A的大;
(Ⅱ)若a=6,b+c=8,求△ABC的面積.
【答案】分析:(Ⅰ)利用正弦定理化簡(jiǎn)已知等式,求出sinA的值,由A為銳角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(Ⅱ)由余弦定理列出關(guān)系式,再利用完全平方公式變形,將a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC的面積.
解答:解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,
∵sinB≠0,∴sinA=,
又A為銳角,
則A=;
(Ⅱ)由余弦定理得:a2=b2+c2-2bc•cosA,即36=b2+c2-bc=(b+c)2-3bc=64-3bc,
∴bc=,又sinA=
則S△ABC=bcsinA=
點(diǎn)評(píng):此題考查了正弦定理,三角形的面積公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,給出如下命題:
①若
AC
AB
>0
,則△ABC為銳角三角形;
②O是△ABC所在平面內(nèi)一定點(diǎn),且滿(mǎn)足
OA
OB
=
OB
OC
=
OC
OA
,則O是△ABC的垂心;
③O是△ABC所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足
OP
=
OA
+λ(
AB
+
AC
),λ∈[0,+∞)
,則動(dòng)點(diǎn)P一定過(guò)△ABC的重心;
④O是△ABC內(nèi)一定點(diǎn),且
OA
+
OB
+
OC
=
0
,則
S△AOC
S△ABC
=
1
3
;
⑤若(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0
,且
AB
|
AB
|
AC
|
AC
|
=
1
2
,則△ABC為等腰直角三角形.
其中正確的命題為
②③④
②③④
(將所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省金華一中2011-2012學(xué)年高一下學(xué)期期中考試數(shù)學(xué)試卷 題型:013

給出下列命題:

(1)α、β是銳角△ABC的兩個(gè)內(nèi)角,則sinα<sinβ;

(2)在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為();

(3)已知為互相垂直的單位向量,-2+λ的夾角為銳角,則實(shí)數(shù)λ的取值范圍是;

(4)已知O是△ABC所在平面內(nèi)定點(diǎn),若P是△ABC的內(nèi)心,則有+λ(),λ∈R;

(5)直線(xiàn)x=-是函數(shù)y=sin(2x-)圖象的一條對(duì)稱(chēng)軸.

其中正確命題是

[  ]

A.(1)(3)(5)

B.(2)(4)(5)

C.(2)(3)(4)

D.(1)(4)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角△ABC中,AB<ACAD是邊BC上的高,P是線(xiàn)段AD內(nèi)一點(diǎn)。過(guò)PPEAC,垂足為E,做PFAB,垂足為F。O1O2分別是△BDF、△CDE的外心。求證:O1、O2、EF四點(diǎn)共圓的充要條件為P是△ABC的垂心。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角△ABC中,AB<ACAD是邊BC上的高,P是線(xiàn)段AD內(nèi)一點(diǎn)。過(guò)PPEAC,垂足為E,做PFAB,垂足為F。O1、O2分別是△BDF、△CDE的外心。求證:O1、O2、E、F四點(diǎn)共圓的充要條件為P是△ABC的垂心。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知在銳角ΔABC中,角所對(duì)的邊分別為,且

(I )求角大。

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線(xiàn)過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面

(2)設(shè)二面角的平面角為,若,求線(xiàn)段長(zhǎng)的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過(guò)橢圓C的右焦點(diǎn)F的直線(xiàn)交橢圓于點(diǎn)M,N,交直線(xiàn)于點(diǎn)P,且直線(xiàn)PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線(xiàn)交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案