如圖雙曲線數(shù)學公式焦點F1,F(xiàn)2,過點F1作垂直于x軸的直線交雙曲線于P點,且∠PF2F1=30°,則雙曲線的漸近線是


  1. A.
    y=±x
  2. B.
    y=±2x
  3. C.
    數(shù)學公式
  4. D.
    y=±4x
C
分析:先根據(jù)焦點三角形PF2F1中角的大小求出三邊之間的關系,在根據(jù)雙曲線定義把三邊用含a,c的式子表示,就可得到含a,c的關系式,把c用a,b表示,求出a,b的關系式,再代入雙曲線的漸近線方程即可.
解答:∵PF1⊥F1F2,∠PF2F1=30°
∴在Rt△PF2F1中,|PF2|=,,|PF1|=
∵P點在雙曲線上,
∴|PF2|-|PF1|=2a,|F2F1|=2c
-=2a


∵c2=a2+b2,∴a2+b2=3a2
∴b2=2a2,b=a
∵雙曲線焦點在x軸上,
∴漸近線方程為y=±x
∴漸近線方程為y=±x
故選C
點評:本題考查了焦點三角形中三邊關系,以及雙曲線的漸近線的求法,屬于圓錐曲線中的常規(guī)題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖雙曲線
x2
a2
-
y2
b2
=1
焦點F1,F(xiàn)2,過點F1作垂直于x軸的直線交雙曲線于P點,且∠PF2F1=30°,則雙曲線的漸近線是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,雙曲線的左焦點為F1,與x軸的交點為A1、A2,P是雙曲線上任意一點,則分別以線段PF1A1A2為直徑的兩圓的位置關系為(  )

A.相交                                              B.相切

C.相離                                              D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,以F1(-2,0)為焦點的橢圓的離心率e=,它與拋物線y2=x交于A1、A2兩點,以OA1、OA2為兩漸近線的雙曲線上一動點P(x,y)到一定點Q(2,0)的距離的最小值為1,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年山東省濟寧市兗州市高二(下)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

如圖雙曲線焦點F1,F(xiàn)2,過點F1作垂直于x軸的直線交雙曲線于P點,且∠PF2F1=30°,則雙曲線的漸近線是( )

A.y=±
B.y=±2
C.
D.y=±4

查看答案和解析>>

同步練習冊答案