17.函數(shù)f(x)=x2-2ax+2在(-∞,6)內(nèi)遞減,則a的取值范圍為[6,+∞).

分析 求出函數(shù)的對稱軸,利用已知條件列出不等式求解即可.

解答 解:函數(shù)f(x)=x2-2ax+2在(-∞,6)內(nèi)遞減,函數(shù)的對稱軸為:x=a,
可得:a≥6,即a∈[6,+∞)
故答案為:[6,+∞).

點評 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn和Tn,且對任意正整數(shù)n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n+5}{2n+3}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{44}{29}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a>b,橢圓C1的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,雙曲線C2的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,C1與C2的離心率之積為$\frac{\sqrt{3}}{2}$,則C2的漸近線方程為$x±\sqrt{2}y=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是470

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若loga3<1,則a取值范圍是(  )
A.a>3B.1<a<3C.0<a<1D.a>3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-$\frac{1}{x}$,
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:f(x)在(0,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式(${\frac{1}{2}}$)x-5≤2x的解集是{x|x≥$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)fM(x)的定義域為實數(shù)集R,滿足fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有兩個非空真子集A,B,且A∩B=∅,則F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(B)+1}}$的值域為{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|x2-5x-6<0},B={x||x+2|≤3},則A∩B=(  )
A.{x|-5≤x<-1}B.{x|-5≤x<5}C.{x|-1<x≤1}D.{x|1≤x<5}

查看答案和解析>>

同步練習(xí)冊答案