10.函數(shù)$f(x)={sin^2}x+\sqrt{3}sinxcosx$的一條對(duì)稱軸為( 。
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=\frac{5π}{12}$

分析 利用二倍角和輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,結(jié)合三角函數(shù)的圖象和性質(zhì),可得對(duì)稱軸方程.即可判斷.

解答 解:函數(shù)$f(x)={sin^2}x+\sqrt{3}sinxcosx$,
化簡(jiǎn)可得:f(x)=$\frac{1}{2}$$-\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$.
對(duì)稱軸方程為:2x-$\frac{π}{6}$=$\frac{π}{2}+kπ$,k∈Z,
得:x=$\frac{1}{2}kπ+\frac{π}{3}$,k∈Z,
當(dāng)k=0,可得一條對(duì)稱軸為x=$\frac{π}{3}$.
故選C

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={x|x2-x-6<0},集合B={x|x≤0},則A∩(∁RB)=(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某種產(chǎn)品的產(chǎn)量以其質(zhì)量指標(biāo)值(單位:克)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于17時(shí),該產(chǎn)品為優(yōu)等品,現(xiàn)在為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取10件樣品,測(cè)量樣品的質(zhì)量指標(biāo)值,得到如圖所示的莖葉圖.
(1)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩廠產(chǎn)品的優(yōu)等品率.
(2)從甲廠10件樣品中抽取2件,乙廠10件中抽取1件,將3件中優(yōu)等品的件數(shù)記為x,求x的分布列和數(shù)學(xué)期望;
(3)從甲廠的10件樣品中有放回地隨機(jī)抽取3件(每件抽取一件),也從乙廠的10件樣品中有放回地隨機(jī)抽取3件(每次抽取一件),求抽到的優(yōu)等品甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點(diǎn)分別是F1,F(xiàn)2,P為橢圓C1上任意一點(diǎn),|PF1|2+|PF2|2的最小值為8.
(I)求橢圓C1的方程;
(II)設(shè)橢圓C2:$\frac{{2{x^2}}}{a^2}+\frac{{2{y^2}}}{b^2}=1,Q({{x_0},{y_0}})$為橢圓C2上一點(diǎn),過點(diǎn)Q的直線交橢圓C1于A,B兩點(diǎn),且Q為線段AB的中點(diǎn),過O,Q兩點(diǎn)的直線交橢圓C1于E,F(xiàn)兩點(diǎn).
(i)求證:直線AB的方程為x0x+2y0y=2;
(ii)當(dāng)Q在橢圓C2上移動(dòng)時(shí),四邊形AEBF的面積是否為定值?若是,求出該定值;不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC中,角A、B、C的對(duì)邊分別為a、b、c,G是平面△ABC上一點(diǎn),且滿足a•$\overrightarrow{GA}$+b•$\overrightarrow{GB}$+c•$\overrightarrow{GC}$=0,則G是△ABC中的(  )
A.內(nèi)心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示程序框圖,若輸入的k=4,則輸出的s=(  )
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)于函數(shù)f(x)給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)函數(shù),若函數(shù)f″(x)有零點(diǎn)x0,則稱(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心,給定函數(shù)f(x)=$\frac{1}{3}$x3-x2-$\frac{1}{3}$x+2,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算$\sum_{i1}^{4035}$f($\frac{i}{2017}$)=4035.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)點(diǎn)O、P、Q是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與拋物線y2=4x的交點(diǎn),O為坐標(biāo)原點(diǎn),若△OPQ的面積為2,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點(diǎn),且$\overrightarrow{AE}=λ\overrightarrow{AB},\overrightarrow{AF}=μ\overrightarrow{AC}$,(其中λ,μ∈(0,1)),且λ+4μ=1,若線段EF,BC的中點(diǎn)分別為M,N,則$\overrightarrow{MN}$的最小值為$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案