【題目】某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.

(Ⅰ)設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為、,比較、的大。ㄖ苯訉懗鼋Y(jié)果,不寫過程);

(Ⅱ)從甲班10人任取2人,設(shè)這2人中及格的人數(shù)為X,求X的分布列和期望;

(Ⅲ)從兩班這20名同學(xué)中各抽取一人,在已知有人及格的條件下,求抽到乙班同學(xué)不及格的概率.

【答案】(1) ;(2) ;(3).

【解析】試題分析:(1)觀察莖葉圖可得結(jié)果;(2)確定X取值為0,1,2,求出相應(yīng)的概率值,得到分布列,求期望即可;(3)由莖葉圖可得,甲班有4人及格,乙班有5人及格,利用條件概率公式求值.

試題解析:

(Ⅰ)由莖葉圖可得

(Ⅱ)由題可知X取值為0,1,2.,,

所以X的分布列為:

X

0

1

2

P(X)

所以

(Ⅲ)由莖葉圖可得,甲班有4人及格,乙班有5人及格.設(shè)事件A=“從兩班這20名同學(xué)中各抽取一人,已知有人及格”,事件B=“從兩班這20名同學(xué)中各抽取一人,乙班同學(xué)不及格”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀:

已知、,,求的最小值.

解法如下:

當(dāng)且僅當(dāng),即時取到等號,

的最小值為.

應(yīng)用上述解法,求解下列問題:

(1)已知,求的最小值;

(2)已知,求函數(shù)的最小值;

(3)已知正數(shù)、、,

求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)是奇函數(shù),函數(shù)的定義域為.

1)求的值;

2)若上單調(diào)遞減,根據(jù)單調(diào)性的定義求實數(shù)的取值范圍;

3)在(2)的條件下,若函數(shù)在區(qū)間上有且僅有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500,測量這些產(chǎn)品的一項質(zhì)量指標值由測量結(jié)果得如下頻率分布直方圖:

(1)求這500件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)由直方圖可以認為這種產(chǎn)品的質(zhì)量指標值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)σ2近似為樣本方差s2.

()利用該正態(tài)分布,P(187.8<Z<212.2);

()某用戶從該企業(yè)購買了100件這種產(chǎn)品X表示這100件產(chǎn)品中質(zhì)量指標值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù).利用()的結(jié)果,求E(X).

附: 12.2.ZN(μ,σ2),P(μσ<Z<μσ)0.682 6,P(μ2σ<Z<μ2σ)0.954 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且對任意正整數(shù),滿足

(1)求數(shù)列的通項公式.

(2)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結(jié)果如右表.

年齡

訪談

人數(shù)

愿意

使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應(yīng)分別抽取多少人?

(Ⅱ)若從第5組的被調(diào)查者訪談人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.

(Ⅲ)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關(guān)?

年齡不低于48歲的人數(shù)

年齡低于48歲的人數(shù)

合計

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計

參考公式:,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水果店購進某種水果的成本為,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來30天的銷售單價與時間之間的函數(shù)關(guān)系式為,銷售量與時間的函數(shù)關(guān)系式為。

該水果店哪一天的銷售利潤最大?最大利潤是多少?

為響應(yīng)政府“精準扶貧”號召,該店決定每銷售水果就捐贈元給精準扶貧對象.欲使捐贈后不虧損,且利潤隨時間 的增大而增大,求捐贈額的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足),且.

(1)求的解析式;

(2)若關(guān)于的方程在區(qū)間上有唯一實數(shù)根,求實數(shù)的取值范圍(注:相等的實數(shù)根算一個).

(3)函數(shù),試問是否存在實數(shù),使得對任意 都有成立,若存在,求出實數(shù)的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案