【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
【答案】解:(Ⅰ) 由題意:當(dāng)0≤x≤20時,v(x)=60;當(dāng)20<x≤200時,設(shè)v(x)=ax+b
再由已知得 ,解得
故函數(shù)v(x)的表達式為 .
(Ⅱ)依題并由(Ⅰ)可得
當(dāng)0≤x<20時,f(x)為增函數(shù),故當(dāng)x=20時,其最大值為60×20=1200
當(dāng)20≤x≤200時,
當(dāng)且僅當(dāng)x=200﹣x,即x=100時,等號成立.
所以,當(dāng)x=100時,f(x)在區(qū)間(20,200]上取得最大值 .
綜上所述,當(dāng)x=100時,f(x)在區(qū)間[0,200]上取得最大值為 ,
即當(dāng)車流密度為100輛/千米時,車流量可以達到最大值,最大值約為3333輛/小時.
答:(Ⅰ) 函數(shù)v(x)的表達式
(Ⅱ) 當(dāng)車流密度為100輛/千米時,車流量可以達到最大值,最大值約為3333輛/小時
【解析】(Ⅰ)根據(jù)題意,函數(shù)v(x)表達式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在20≤x≤200時的表達式,根據(jù)一次函數(shù)表達式的形式,用待定系數(shù)法可求得;(Ⅱ)先在區(qū)間(0,20]上,函數(shù)f(x)為增函數(shù),得最大值為f(20)=1200,然后在區(qū)間[20,200]上用基本不等式求出函數(shù)f(x)的最大值,用基本不等式取等號的條件求出相應(yīng)的x值,兩個區(qū)間內(nèi)較大的最大值即為函數(shù)在區(qū)間(0,200]上的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:(1)函數(shù)f(x)在[0,+∞)上是增函數(shù),在(﹣∞,0)上也是增函數(shù),所以f(x)在R上是增函數(shù);(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞);(4)函數(shù)y=lg10x和函數(shù)y=elnx表示相同函數(shù).其中正確命題的個數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足;數(shù)列的前項和為,且滿足, , .
(1)求數(shù)列、的通項公式;
(2)是否存在正整數(shù),使得恰為數(shù)列中的一項?若存在,求所有滿足要求的;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某城市氣象部門的數(shù)據(jù)中,隨機抽取了100天的空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如表:
空氣質(zhì)量指數(shù)t | (0,50] | (50,100] | (100,150] | (150,200] | (200,300] | |
質(zhì)量等級 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴重污染 |
天數(shù)K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)在該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y=,且當(dāng)t>300時,y>500估計在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;
(2)若在(1)中,當(dāng)t>300時,y與t的關(guān)系擬合于曲線,現(xiàn)已取出了10對樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且,求擬合曲線方程.
(附:線性回歸方程=a+bx中,b=,a=﹣b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為(0,+∞),且對一切x>0,y>0都有,當(dāng)時,有
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足 =λ +μ (1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為4,則ab﹣a﹣b=( )
A.﹣1
B.﹣
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)已知正數(shù)x,y滿足x+2y=1,求 1 x + 1 y 的最小值
(2)已知x>1,求:y=x+最小值,并求相應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是公差為1的等差數(shù)列,a1 , a5 , a25成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= 3+an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com