【題目】已知拋物線 ,焦點(diǎn)到準(zhǔn)線的距離為4,過點(diǎn) 的直線交拋物線于 兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點(diǎn) 恰是線段 的中點(diǎn),求直線 的方程.
【答案】解:(Ⅰ)由題設(shè)可知 ,所以拋物線方程為
(Ⅱ)方法一:設(shè) ,則
又 ,相減整理得
所以直線 的方程是 ,即 .
方法二:由題設(shè)可知直線 的斜率存在,
設(shè)直線 的方程為 , ,
由 ,消去 ,得 ,
易知 , ,
又 所以 ,
所以直線 的方程是 ,即 .
【解析】(I)根據(jù)拋物線的定義可得;
(II)方法一:應(yīng)用點(diǎn)差法可得直線AB的斜率,根據(jù)直線的點(diǎn)斜式可求直線AB的方程;
方法二:根據(jù)點(diǎn)斜式設(shè)出直線AB的方程,聯(lián)立直線與拋物線的方程,得到關(guān)于y的一元二次方程,根據(jù)中點(diǎn)公式可得斜率k,即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是圓柱的母線, 是圓柱底面圓的直徑, 是底面圓周上異于的任意一點(diǎn), .
(1)求證: ;
(2)求三棱錐體積的最大值,并寫出此時(shí)三棱錐外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=﹣logbx的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)判斷函數(shù)的奇偶性;
(2)求證:函數(shù)在為單調(diào)增函數(shù);
(3)求滿足的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓 上任取一點(diǎn) ,點(diǎn) 在 軸的正射影為點(diǎn) ,當(dāng)點(diǎn) 在圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn) 滿足 ,動(dòng)點(diǎn) 形成的軌跡為曲線 .
(Ⅰ)求曲線 的方程;
(Ⅱ)點(diǎn) 在曲線 上,過點(diǎn) 的直線 交曲線 于 兩點(diǎn),設(shè)直線 斜率為 ,直線 斜率為 ,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)將函數(shù)寫成分段函數(shù)的形式,并畫出函數(shù)的大致圖像;
(2)求證:函數(shù)在上是增函數(shù);
(3)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若, 時(shí),有成立.
(1)判斷在上的單調(diào)性,并證明;
(2)解不等式;
(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com