【題目】已知圓:,過且與圓相切的動圓圓心為.
(1)求點的軌跡的方程;
(2)已知過點的兩直線和互相垂直,且直線交曲線于,兩點,直線交曲線于,兩點(,,,為不同的四個點),求四邊形的面積的最小值.
【答案】(1)(2)
【解析】
(1)設動圓半徑為,判斷圓與圓內(nèi)切,從而可得,,由橢圓定義可知,點的軌跡是以、為焦點,實軸長為4的橢圓,根據(jù)橢圓的標準方程即可求解.
(2)分類討論若或的斜率不存在,求出四邊形的面積;若兩條直線的斜率都存在,設的斜率為,則的斜率為,根據(jù)點斜式求出、的方程,將直線方程與橢圓方程聯(lián)立,利用弦長公式求出,由,利用基本不等式即可求解.
解:(1)設動圓半徑為,由于在圓內(nèi),故圓與圓內(nèi)切,
則,,∴,
由橢圓定義可知,點的軌跡是以、為焦點,實軸長為4的橢圓,
,,,
∴軌跡的方程為.
(2)若或的斜率不存在,四邊形的面積,
若兩條直線的斜率都存在,設的斜率為,則的斜率為,
則的方程為,的方程為,
聯(lián)立方程組,得,
由韋達定理得,,
,
設,,則,
同理可得,
∴
,
當且僅當,即時等號成立.
∵,因此當時,四邊形的面積取得最小值為.
另解一:
.
當即時等號成立.
另解二:也可以令換元求解.
科目:高中數(shù)學 來源: 題型:
【題目】2016年“一帶一路”沿線64個國家GDP之和約為12.0萬億美元,占全球GDP的;人口總數(shù)約為32.1億,占全球總?cè)丝诘?/span>;對外貿(mào)易總額(進口額+出口額)約為71885.6億美元,占全球貿(mào)易總額的.
2016年“一帶一路”沿線國家情況
人口(萬人) | GDP(億美元) | 進口額(億美元) | 出口額(億美元) | |
蒙古 | 301.4 | 116.5 | 38.7 | 45.0 |
東南亞11國 | 63852.5 | 25802.2 | 11267.2 | 11798.6 |
南亞8國 | 174499.0 | 29146.6 | 4724.1 | 3308.5 |
中亞5國 | 6946.7 | 2254.7 | 422.7 | 590.7 |
西亞、北非19國 | 43504.6 | 36467.5 | 9675.5 | 8850.7 |
東歐20國 | 32161.9 | 26352.1 | 9775.5 | 11388.4 |
關于“一帶一路”沿線國家2016年狀況,能夠從上述資料中推出的是( )
A.超過六成人口集中在南亞地區(qū)
B.東南亞和南亞國家GDP之和占全球的以上
C.平均每個南亞國家對外貿(mào)易額超過1000億美元
D.平均每個東歐國家的進口額高于平均每個西亞、北非國家的進口額
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)當時,求的單調(diào)區(qū)間;
(2)當函數(shù)在區(qū)間上有且只有個極值點時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2,點E、F、M分別為C1D1,A1D1,B1C1的中點,過點M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)
(2)在圖2中,求證:D1B⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將四個不同的小球放入三個分別標有1、2、3號的盒子中,不允許有空盒子的放法有多少種?下列結(jié)論正確的有( ).
A.B.C.D.18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線C:()的焦點F到直線的距離為.AB是過拋物線C焦點F的動弦,O是坐標原點,過A,B兩點分別作此拋物線的切線,兩切線相交于點P.
(1)求證:.
(2)若動弦AB不經(jīng)過點,直線AB與準線l相交于點N,記MA,MB,MN的斜率分別為,,.問:是否存在常數(shù)λ,使得在弦AB運動時恒成立?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“猜想”是指對于每一個正整數(shù),若為偶數(shù),則讓它變成;若為奇數(shù),則讓它變成.如此循環(huán),最終都會變成,若數(shù)字按照以上的規(guī)則進行變換,則變換次數(shù)為偶數(shù)的頻率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com