【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)證明:當時,函數(shù)有三個零點.
【答案】(1)見解析;(2)見解析.
【解析】
(1)求出函數(shù)的解析式,求導,分、及解關(guān)于導函數(shù)的不等式即可得出函數(shù)的單調(diào)區(qū)間;
(2)易知函數(shù)的零點就是函數(shù)的零點,結(jié)合(1)的結(jié)論以及零點存在性定理即可得證.
(1),
.
①當時,,
當時,,當時,.
函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
②當時,,,則函數(shù)在上為增函數(shù);
③當時,,
當,,當,.
函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
綜上所述,當時,函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
當時,函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)減區(qū)間;
當時,函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;
(2),函數(shù)的零點就是函數(shù)的零點,
當時,由(1)知函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減.
當時,函數(shù)單調(diào)遞增,
因為,,
令,
則,
,,函數(shù)在上單調(diào)遞減,
,
所以,存在,使得,
所以,函數(shù)在上有個零點;
當,為減函數(shù),極小值點,且,
所以,函數(shù)在有個零點;
當,函數(shù)為增函數(shù),
,,
存在,使得,所以函數(shù)在有1個零點.
綜上,當時,函數(shù)有三個零點,即函數(shù)有三個零點.
科目:高中數(shù)學 來源: 題型:
【題目】九龍坡區(qū)圍繞大力發(fā)展高新技術(shù)產(chǎn)業(yè)、推進高質(zhì)量城市管理、創(chuàng)造高品質(zhì)人民生活,建設(shè)宜居、宜業(yè)、宜游的“三高九龍坡、三宜山水城”的總愿景,全面開啟新時代的新夢想、新征程.熱心網(wǎng)友“我是坡民”通過問卷,對近五年游客滿意度排在前三名的區(qū)內(nèi)景點進行了統(tǒng)計,結(jié)果如表一.根據(jù)此表,他又對游覽過熱門景點重慶動物園的100名游客進行滿意度調(diào)查,給景點打分,滿分為100分,得分超過90分的為“特別滿意”,其余為“基本滿意”,將受調(diào)查游客年齡為12歲及以下的人群稱為兒童,得到列聯(lián)表,如表二:
表一:
年份景點排名 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
1 | 重慶動物園 | 重慶動物園 | 龍門陣景區(qū) | 彩云湖 | 彩云湖 |
2 | 華巖景區(qū) | 華巖景區(qū) | 重慶動物園龍 | 龍門陣景區(qū) | 黃桷坪涂鴉街 |
3 | 巴國城 | 海蘭云天 | 黃桷坪涂鴉街 | 華巖景區(qū) | 重慶動物園 |
表二:
特別滿意 | 基本滿意 | 合計 | |
兒童 | 40 | ||
非兒童 | 30 | ||
合計 | 60 | 100 |
(1)完成表二的列聯(lián)表,并判斷是否有99.9%的把握認為調(diào)查對象是否“特別滿意”與是否是兒童有關(guān);
(2)為安排節(jié)假日出行,“我是坡民”從表一的5個年份中隨機選擇2個年份,再從這2個年份排名前三的景點中任意選擇1個景點,記選擇出的景點中“重慶動物園”出現(xiàn)的次數(shù)為,求的分布列及數(shù)學期望.
參考公式.
參考數(shù)據(jù):,,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某北方村莊4個草莓基地,采用水培陽光栽培方式種植的草莓個大味美,一上市便成為消費者爭相購買的對象.光照是影響草莓生長的關(guān)鍵因素,過去50年的資料顯示,該村莊一年當中12個月份的月光照量X(小時)的頻率分布直方圖如下圖所示(注:月光照量指的是當月陽光照射總時長).
(1)求月光照量(小時)的平均數(shù)和中位數(shù);
(2)現(xiàn)準備按照月光照量來分層抽樣,抽取一年中的4個月份來比較草莓的生長狀況,問:應(yīng)在月光照量,,的區(qū)間內(nèi)各抽取多少個月份?
(3)假設(shè)每年中最熱的5,6,7,8,9,10月的月光照量是大于等于240小時,且6,7,8月的月光照量是大于等于320小時,那么,從該村莊2018年的5,6,7,8,9,10這6個月份之中隨機抽取2個月份的月光照量進行調(diào)查,求抽取到的2個月份的月光照量(小時)都不低于320的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設(shè)是曲線上任意一點,直線與兩坐標軸的交點分別為,求最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機會,每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學業(yè)成績對學生進行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名,其評估成績近似的服從正態(tài)分布.現(xiàn)隨機抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進行了分組,繪制了頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若學校規(guī)定評估成績超過分的畢業(yè)生可參加三家公司的面試.
(。┯脴颖酒骄鶖(shù)作為的估計值,用樣本標準差作為的估計值,請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李華同學取得了三個公司的面試機會,經(jīng)過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準備依次從三家公司進行面試選崗,公司規(guī)定:面試成功必須當場選崗,且只有一次機會.李華在某公司選崗時,若以該崗位工資與未進行面試公司的工資期望作為抉擇依據(jù),問李華可以選擇公司的哪些崗位?
并說明理由.
附:,若隨機變量,
則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求在處的切線方程;
(2)對任意的,恒成立,求的取值范圍;
(3)設(shè),在(2)的條件下,當取最小值且時,試比較與在上的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,過且與圓相切的動圓圓心為.
(1)求點的軌跡的方程;
(2)已知過點的兩直線和互相垂直,且直線交曲線于,兩點,直線交曲線于,兩點(,,,為不同的四個點),求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將三棱錐與拼接得到如圖所示的多面體,其中,,,分別為,,,的中點,.
(1)當點在直線上時,證明:平面;
(2)若與均為面積為的等邊三角形,求該多面體體積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com