(本小題滿分14分)
在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切于坐標(biāo)原點(diǎn).橢圓E:與圓的一個(gè)交點(diǎn)到橢圓E的兩焦點(diǎn)的距離之和為.
(Ⅰ)求圓和橢圓E的方程;
(Ⅱ)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于線段的長.若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(Ⅰ)圓C的方程為;橢圓E的方程為
(Ⅱ)Q(,)
【解析】(Ⅰ)設(shè)圓心坐標(biāo)為(m,n)(m<0,n>0),則該圓的方程為.……1分,已知該圓與直線y=x相切,那么圓心到該直線的距離等于圓的半徑,則=2.,即=4…… ①……3分,又圓與直線切于原點(diǎn),將點(diǎn)(0,0)代入,得m2+n2=8.……②……5分,聯(lián)立方程①和②組成方程組解得,
∴圓C的方程為.……7分,
∵一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為,∴,,
∴橢圓E的方程為.……9分
(Ⅱ)由橢圓E的方程,得其焦距c=4,∴右焦點(diǎn)為F(4,0),那么=4.……10分
要探求是否存在異于原點(diǎn)的點(diǎn)Q,使得該點(diǎn)到右焦點(diǎn)F的距離等于的長度4,可轉(zhuǎn)化為探求以右焦點(diǎn)F為頂點(diǎn),半徑為4的圓與圓C:的圓的交點(diǎn)坐標(biāo).聯(lián)立方程組:,……12分,解得或.
∴存在異于原點(diǎn)的點(diǎn)Q(,),使得該點(diǎn)到右焦點(diǎn)F的距離等于的長.……14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com