設(shè)向量
a
=(λ+2,λ2-
3
cos2α),
b
=(m,
m
2
+sinαcosα)其中λ,m,α為實(shí)數(shù).
(Ⅰ)若α=
π
12
,且
a
b
,求m的取值范圍;
(Ⅱ)若
a
=2
b
,求
λ
m
的取值范圍.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專(zhuān)題:計(jì)算題,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(Ⅰ)由向量垂直的條件,化簡(jiǎn)得到關(guān)于λ的方程,對(duì)系數(shù)討論,當(dāng)m=-
1
2
時(shí),當(dāng)m≠-
1
2
時(shí),△≥0,解不等式,最后求并集即可;
(Ⅱ)由向量共線(xiàn)知識(shí),得到λ+2=2m且λ2-
3
cos2α
=m+2sinαcosα,消去λ,得m的式子,運(yùn)用三角函數(shù)的二倍角公式和兩角和的正弦公式化簡(jiǎn),再由正弦函數(shù)的值域,解關(guān)于m的不等式,即可得到所求范圍.
解答: 解:(Ⅰ)α=
π
12
時(shí),
a
=(λ+2,λ2-
3
2
),
b
=(m,
m
2
+
1
4
),
由于
a
b
,則
a
b
=0,即有(λ+2)m+(λ2-
3
2
)(
m
2
+
1
4
)=0,
即有
2m+1
4
λ2
+mλ+
10m-3
8
=0對(duì)一切λ∈R均有解,
當(dāng)m=-
1
2
時(shí),λ=2成立,
當(dāng)m≠-
1
2
時(shí),△=m2-4×
2m+1
4
×
10m-3
8
≥0,
-1-
10
6
≤m≤
-1+
10
6
,且m≠-
1
2

綜上,可得,m的取值范圍是[
-1-
10
6
,
-1+
10
6
];
(Ⅱ)
a
=2
b
,則λ+2=2m且λ2-
3
cos2α
=m+2sinαcosα,
消去λ,得(2m-2)2-m=sin2α+
3
cos2α

即有4m2-9m+4=2sin(2α+
π
3
)∈[-2,2],
由-2≤4m2-9m+4≤2,解得,
1
4
≤m≤2

λ
m
=
2m-2
m
=2-
2
m
∈[-6,1].
則有
λ
m
的取值范圍是[-6,1].
點(diǎn)評(píng):本題考查向量共線(xiàn)和垂直的條件,考查三角函數(shù)的化簡(jiǎn)和求值,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某連鎖分店銷(xiāo)售某種商品,每件商品的成本為4元,并且每件商品需向總店交a(1≤a≤3)元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為x(7≤x≤9)元時(shí),一年的銷(xiāo)售量為(10-x)2萬(wàn)件.
(1)求該連鎖分店一年的利潤(rùn)L(萬(wàn)元)與每件商品的售價(jià)x的函數(shù)關(guān)系式L(x);
(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤(rùn)L最大,并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿(mǎn)足|z-i|+|z+3|=10,則復(fù)數(shù)z在平面內(nèi)對(duì)應(yīng)的點(diǎn)的集合表示的圖形是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直角三角形斜邊為c,直角邊分別為a,b,求證:log(b+c)a+log(c-b)a=2log(b+c)a•log(c-b)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A(2,-2),B(4,-1),C(x,-3)三點(diǎn)共線(xiàn),則x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π),一個(gè)周期內(nèi)的函數(shù)圖象如圖所示,求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
3
x
+
1
3
x
-m
)的值域?yàn)镽,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+8x+y2+a=0在y軸上截得的線(xiàn)段長(zhǎng)為4.
(1)求過(guò)點(diǎn)P(-2,4)且與圓C相切的直線(xiàn)方程;
(2)若點(diǎn)O和點(diǎn)C分別是坐標(biāo)原點(diǎn)和已知圓的圓心,點(diǎn)Q為圓C上任意一點(diǎn),求
OQ
CQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y|y=log2x,x>2},B={x|x2-2x-3>0},則A∩B=( 。
A、{x|x<-1}
B、{x|x>1}
C、{x|-1<x<3}
D、{x|x>3}

查看答案和解析>>

同步練習(xí)冊(cè)答案