設x,y滿足不等式組
x≥0
x+3y≥4
3x+y≤4
則目標函數(shù)z=2x+y的最小值是( 。
A、
3
2
B、4
C、
4
3
D、
3
4
考點:簡單線性規(guī)劃
專題:數(shù)形結合
分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件,畫出滿足約束條件的可行域,再用角點法,求出目標函數(shù)的最大值.
解答: 解:畫出滿足條件
x≥0
x+3y≥4
3x+y≤4
的平面區(qū)域,
如圖示:
,
而z=2x+y可化為:y=-2x+z,
顯然y=-2x+z過(0,
4
3
)時,z最小為
4
3

故選:C.
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx-ax.
(1)若曲線f(x)在點(1,f(1))處的切線過點(2,0),求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)如果x1,x2(x1<x2)是函數(shù)f(x)的兩個零點,f′(x)為f(x)的導數(shù),證明:f′(
x1+2x2
3
)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x2+x-6=0},集合N={x|ax+2=0,a∈R},且N⊆M,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=2x-
1
2x

(1)若f(x)=
3
2
,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某網(wǎng)站針對2014年中國好聲音歌手A,B,C三人進行網(wǎng)上投票,結果如下
觀眾年齡支持A支持B支持C
20歲以下200400800
20歲以上(含20歲)100100400
(1)在所有參與該活動的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值;
(2)若在參加活動的20歲以下的人中,用分層抽樣的方法抽取7人作為一個總體,從這7人中任意抽取3人,用隨機變量X表示抽取出3人中支持B的人數(shù),寫出X的分布列并計算E(X),D(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1,AA1=2,E,F(xiàn)分別為棱CC1,BB1的中點.
(1)求三棱錐E-ABC的體積.
(2)求證:平面AFC∥平面B1DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
xax
|x|
(0<a<1)的圖象的大致形狀是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(x+3)-1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m,n均大于0,則
1
m
+
2
n
的最小值為( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x-φ),且
π
3
0
f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是( 。
A、x=
3
B、x=
6
C、x=
π
3
D、x=
π
6

查看答案和解析>>

同步練習冊答案