化簡(jiǎn)求值:(
1
4
)-2+(
1
6
6
)-
1
3
+
3
+
2
3
-
2
-(1.03)0×(-
6
2
)3
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則直接計(jì)算.
解答: 解:(
1
4
)-2+(
1
6
6
)-
1
3
+
3
+
2
3
-
2
-(1.03)0×(-
6
2
)3

=(4-1-2+(6-
3
2
)-
1
3
+(
3
+
2
)
2
-1×(-
6
3
2
8

=16+6
1
2
+3+2+2•6 
1
2
+
3
4
6
1
2

=21+(1+2+
3
4
)•6 
1
2

=21+
15
6
4
點(diǎn)評(píng):本題考查根式與分?jǐn)?shù)指數(shù)冪的化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真解答,避免出現(xiàn)計(jì)算上的低級(jí)錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x丨丨x-1丨<2},B={x丨y=lg(x2+x)},設(shè)U=R,則A∩(∁UB)等于( 。
A、[3,+∞)
B、(-1,0]
C、(3,+∞)
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(
6
2
1
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:y=kx+m(k≠0)與橢圓C交于M,N兩點(diǎn),直線OM、ON的斜率存在且和為4k,求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ和cotθ是方程x2+kx+1=0的兩個(gè)根,當(dāng)|k|≥2時(shí),求tan4θ-cot4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把一顆質(zhì)地均勻,四個(gè)面上分別標(biāo)有復(fù)數(shù)1,-1,i,-i(i為虛數(shù)單位)的正四面體玩具連續(xù)拋擲兩次,第一次出現(xiàn)底面朝下的復(fù)數(shù)記為a,第二次出現(xiàn)底面朝下的復(fù)數(shù)記為b.
(Ⅰ)用A表示“ab=-1”這一事件,求事件A的概率P(A);
(Ⅱ)設(shè)復(fù)數(shù)ab的實(shí)部為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an},{bn},{cn},已知a1=4,b1=3,c1=5,an+1=an,bn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*).
(1)求數(shù)列{cn-bn}的通項(xiàng)公式;
(2)求證:對(duì)任意n∈N*,bn+cn為定值;
(3)設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,若對(duì)任意n∈N*,都有p•(Sn-4n)∈[1,3],求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三名音樂(lè)愛好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為
2
3
, 
3
4
, 
1
2
,他們海選合格與不合格是相互獨(dú)立的.
(Ⅰ)求在這次海選中,這三名音樂(lè)愛好者至少有一名海選合格的概率;
(Ⅱ)記在這次海選中,甲、乙、丙三名音樂(lè)愛好者所得分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)為m+1(m>0)的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),點(diǎn)M是線段AB上的一點(diǎn),且
AM
=m
MB

(1)求點(diǎn)M的軌跡Γ的方程,并判斷軌跡Γ為何種圓錐曲線;
(2)設(shè)過(guò)點(diǎn)Q(
1
2
,0)且斜率不為0的直線交軌跡Γ于C,D兩點(diǎn).設(shè)點(diǎn)P在x軸上,且恒滿足
S△PQC
S△PQD
=
|PC|
|PD|
,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若k≥3(k∈N+),試比較logk(k+1)與logk-1k的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案