2.$\overrightarrow a=(-2,1),\overrightarrow b=(tanα,-1),且\overrightarrow a∥\overrightarrow b,則\frac{sinα+cosα}{sinα-cosα}$=3.

分析 根據(jù)向量垂直坐標(biāo)運(yùn)算關(guān)系建立等式,即可求解.

解答 解:由題意,$\overrightarrow{a}∥\overrightarrow$,
∴tanα=2,
則$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了“弦化切”及同角三角函數(shù)基本關(guān)系式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若直線l1:(a+2)x+(a-1)y+8=0與直線l2:(a-3)x+(a+2)y-7=0垂直,那么a的值為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.甲乙兩人進(jìn)行拋硬幣游戲,規(guī)定:每次拋幣后,正面向上甲贏,否則乙贏.此時(shí)兩人正在游戲,切知甲再贏m(常數(shù)m>1)次就獲勝,而乙要再贏n(常數(shù)n>m)次才獲勝,其中一人獲勝游戲就結(jié)束.設(shè)再進(jìn)行ξ次拋幣,游戲結(jié)束.
(1)若m=2,n=3,求ξ的分布列及數(shù)學(xué)期望;
(2)若n=m+2寫(xiě)出概率P(ξ=m+k)(k=2,3,…,m+1)的表達(dá)式(不必寫(xiě)出過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-x+alnx,a∈R$.
(Ⅰ)若a=-2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)$0<a<\frac{2}{9}$,函數(shù)f(x)的兩個(gè)極值點(diǎn)為x1,x2,且x1<x2,求證:$\frac{{f({x_1})}}{x_2}>-\frac{5}{12}-\frac{1}{3}ln3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=x+$\frac{1}{3}$e2x+aex在(-∞,+∞)單調(diào)遞增,則a的取值范圍是(  )
A.$[-\frac{{2\sqrt{6}}}{3},+∞)$B.$[\frac{{2\sqrt{6}}}{3},+∞)$C.$[-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}]$D.$(-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)y=2sin(2x+$\frac{π}{4}$)的對(duì)稱軸是x=$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=|x+2|+|x-a|的圖象關(guān)于直線x=1對(duì)稱,則a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知正方體ABCD-A${\;}_{{1}_{\;}}$B1C1D1,BD,BC1,B1D1,A1C1分別為各個(gè)面的對(duì)角線;
(1)求證:A1C1⊥平面BB1D1D;
(2)求異面直線B1D1與BC1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面積ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=$\sqrt{3}$
(1)證明:平面PBE⊥平面PAB;
(2)過(guò)PC中點(diǎn)FFH∥平面PBD,F(xiàn)H交平面ABCD于H點(diǎn),判定H點(diǎn)位于平面ABCD的那個(gè)具體位置?(至少寫(xiě)出兩個(gè)位置,無(wú)須證明)
(3)求二面角A-BE-P的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案