(2013•成都模擬)將4個(gè)相同的白球和5個(gè)相同的黑球全部 放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中都不能同時(shí)只 放入2個(gè)白球和2個(gè)黑球,則所有不同的放法種數(shù)為( 。
分析:根據(jù)題意,用間接法,首先用擋板法計(jì)算全部的每個(gè)盒子既有白球,又有黑球的情況,再計(jì)算不合題意的即一個(gè)盒子中只放入2個(gè)白球和2個(gè)黑球的情況數(shù)目,由事件之間的關(guān)系計(jì)算可得答案.
解答:解:首先把四個(gè)白球排列,用2塊擋板隔開分成3份,共有C32=3種結(jié)果,
再把五個(gè)黑球用2塊擋板分開,共有C42=6種結(jié)果,
根據(jù)分步計(jì)數(shù)原理知共有3×6=18種結(jié)果,
其中同時(shí)一個(gè)盒子中只放入2個(gè)白球和2個(gè)黑球的情況有3×2=6種情況;
則滿足題意的有18-6=12種;
故選C.
點(diǎn)評:本題考查排列組合的運(yùn)用,解題的關(guān)鍵是明確同色的小球都相同,在計(jì)算全部情況時(shí)只要用擋板法分成三份就可以,這里有兩種顏色的小球要分開兩次.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足:①f(x)在[m,n]上是單調(diào)函數(shù);②f(x)在[m,n]上的值域?yàn)閇2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有
①③④
①③④
(填上所有正確的序號)
①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=
4x
x2+1
(x≥0)
;④f(x)=loga(ax-
1
8
)(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)某大學(xué)對1000名學(xué)生的自主招生水平測試成績進(jìn)行統(tǒng)計(jì),得到樣本頻率分布直方圖(如圖),則這1000名學(xué)生在該次自主招生水平測試中不低于70分的學(xué)生數(shù)是
600
600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)已知向量
.
m
=(
3
sin
x
4
,1),
.
n
=(cos
x
4
,cos2
x
4
),f(x)=
.
m
.
n

(1)若f(x)=1,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c且滿足acosC+
1
2
c=b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)若實(shí)數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
,則z=2x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)設(shè)函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(α)=4,則實(shí)數(shù)α為
-4或2
-4或2

查看答案和解析>>

同步練習(xí)冊答案