【題目】如圖,河的兩岸分別有生活小區(qū)和,其中,三點共線,與的延長線交于點,測得,,,,,若以所在直線分別為軸建立平面直角坐標系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.
(1)求的值.
(2)現(xiàn)準備建一座橋,其中分別在上,且,的橫坐標為.寫出橋的長關于的函數(shù)關系式,并標明定義域;當為何值時,取到最小值?最小值是多少?
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點為棱的中點.
(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;
(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動網(wǎng)絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.
(1)求異面直線AC與BE所成角的余弦值;
(2)求二面角F-BC1-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)當時,過原點分別做曲線 與的切線,,若兩切線的斜率互為倒數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左,右焦點分別為,,點為橢圓上任意一點,點關于原點的對稱點為點,有,且當的面積最大時為等邊三角形.
(1)求橢圓的標準方程;
(2)與圓相切的直線:交橢圓于,兩點,若橢圓上存在點滿足,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是( )
A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著
B.從2014年到2018年這5年,高鐵運營里程與年價正相關
C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上
D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的偶函數(shù),當時,.
(1)用分段函數(shù)形式寫出的解析式;
(2)寫出的單調區(qū)間;
(3)求出函數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校一個校園景觀的主題為“托起明天的太陽”,其主體是一個半徑為5米的球體,需設計一個透明的支撐物將其托起,該支撐物為等邊圓柱形的側面,厚度忽略不計.軸截面如圖所示,設.(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用表示圓柱的高;
(2)實踐表明,當球心和圓柱底面圓周上的點的距離達到最大時,景觀的觀賞效
果最佳,求此時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com