已知函數(shù).
(1)證明:;
(2)證明:.
(1)證明過程詳見解析;(2)證明過程詳見解析.
解析試題分析:本題主要考查導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的最值等基礎知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,對函數(shù)求導,利用單調(diào)遞增,單調(diào)遞減,來判斷函數(shù)的單調(diào)性來決定函數(shù)最值的位置;第二問,因為,所以轉(zhuǎn)化為,結合第一問的結論,所以只需證明,通過對求導即可.
, 1分
當時,,當時,
即在上為減函數(shù),在上為增函數(shù) 4分
∴,得證. 5分
(2),, 6分
∴時,,時,
即在上為減函數(shù),在上為增函數(shù)
∴ 8分
又由(1) 10分
∴ . 12分
考點:導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
已知
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在 上的最小值;
(3)對一切的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•重慶)設f(x)=2x3+ax2+bx+1的導數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關于直線x=﹣對稱,且f′(1)=0
(Ⅰ)求實數(shù)a,b的值
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設.
① 當時,對任意,都有成立,求的最大值;
② 設的導函數(shù).若存在,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)在上的最大值為().
(1)求數(shù)列的通項公式;
(2)求證:對任何正整數(shù)n (n≥2),都有成立;
(3)設數(shù)列的前n項和為Sn,求證:對任意正整數(shù)n,都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com