已知函數(shù).
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.(,為自然對(duì)數(shù)的底數(shù))
(1) 實(shí)數(shù)的取值范圍為;(2) 的取值范圍為;(3) 見解析.
【解析】
試題分析:(1)先利用導(dǎo)數(shù)求出函數(shù)在處取得唯一的極值,因?yàn)楹瘮?shù)在區(qū)間上存在極值點(diǎn),故;(2)根據(jù)條件可得,然后令,求出的最小值,即可解得的范圍;(3)由(2)的結(jié)論可得,令,則有,分別令,則有
將這個(gè)不等式左右兩邊分別相加可得.
試題解析:(1)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092823593851758436/SYS201309290001228331473101_DA.files/image024.png">,,
由,當(dāng)時(shí),,當(dāng)時(shí),,
則在上單增,在上單減,函數(shù)在處取得唯一的極值。
由題意得,故所求實(shí)數(shù)的取值范圍為 4分
(2) 當(dāng)時(shí),不等式. 6分
令,由題意,在恒成立。
令,則,當(dāng)且僅當(dāng)時(shí)取等號(hào)。
所以在上單調(diào)遞增,
因此,則在上單調(diào)遞增,
所以,即實(shí)數(shù)的取值范圍為 9分
(3)由(2)知,當(dāng)時(shí),不等式恒成立,
即, 11分
令,則有.
分別令,則有,
將這個(gè)不等式左右兩邊分別相加,則得
故,從而. 14分
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的極值;2.利用函數(shù)單調(diào)性解參數(shù)范圍;3.對(duì)數(shù)式的運(yùn)算性質(zhì);4.不等式證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).(1)若在時(shí)取得極值,求的值;(2)求的單調(diào)區(qū)間; (3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù):
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)問:是否存在常數(shù),當(dāng)時(shí),的值域?yàn)閰^(qū)間,且的長(zhǎng)度為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年重慶市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù),
(1) 若,,且的定義域是[– 1,1],P(x1,y1),Q(x2,y2)是其圖象上任意兩點(diǎn)(),設(shè)直線PQ的斜率為k,求證:;
(2) 若,且的定義域是,.
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(滿分14分)已知函數(shù).
(1)若,求a的取值范圍;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:重慶市2009-2010學(xué)年度下期期末考試高二數(shù)學(xué)試題(文科) 題型:解答題
1. (本小題滿分13分)
已知函數(shù).
(1) 若在x = 0處取得極值為 – 2,求a、b的值;
(2) 若在上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com