已知圓C和軸相切,圓心C在直線上,且被直線截得的弦長為,求圓C的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知F1,F2分別是橢圓E:+y2=1的左、右焦點,F1,F2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(1)求圓C的方程;
(2)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1:x+y+3=0上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,求|QM|的最小值.?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓與圓外切于點,直線是兩圓的外公切線,分別與兩圓相切于兩點,是圓的直徑,過作圓的切線,切點為.
(Ⅰ)求證:三點共線;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的左右頂點分別為,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線AC(C點不同于A,B)與直線交于點R,D為線段RB的中點,試判斷直線CD與曲線E的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點動點P滿足.
(Ⅰ)若點的軌跡為曲線,求此曲線的方程;
(Ⅱ)若點在直線:上,直線經(jīng)過點且與曲線有且只有一個公共點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓問在圓C上是否存在兩點A,B關于直線對稱,且以AB為直徑的圓經(jīng)過原點?若存在,寫出直線AB的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以為極軸建立極坐標系,直線的極坐標方程為.
⑴寫出直線的直角坐標方程和圓的普通方程;
⑵求圓截直線所得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com