【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方
圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯誤的概率不超過的前提下,你是否有理由認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.
附:
【答案】(I)沒有理由認(rèn)為“體育迷”與性別有關(guān);(II)分布列見解析, , .
【解析】試題分析:(I)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入公式計算得出,與比較即可得出結(jié)論;(II)由題意,用頻率代替概率可得出從觀眾中抽取一名“體育迷”的概率為,由于,從而給出分布列,再用公式計算出期望與方差即可.
試題解析:(Ⅰ)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而列聯(lián)表如下:
非體育迷 | 體育迷 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
由列聯(lián)表中數(shù)據(jù)代入公式計算,得:
因為,所以,沒有理由認(rèn)為“體育迷”與性別有關(guān).
(Ⅱ)由頻率分布直方圖知抽到“體育迷”的頻率為,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率為,由題意,
,從而的分布列為:
0 | 1 | 2 | 3 | |
, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,為常數(shù)
(1)用表示的最小值,求的解析式
(2)在(1)中,是否存在最小的整數(shù),使得對于任意均成立,若存在,求出的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號,按編號順序平均分成20組(1~8號,9~16號,。。。,153~160號).若第15組應(yīng)抽出的號碼為116,則第一組中用抽簽方法確定的號碼是( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b通過第一、三、四象限,則有 ( )
A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在處有極值,求函數(shù)的最大值;
(2)①是否存在實數(shù),使得關(guān)于的不等式在上恒成立?若存在,求出的取值范圍;若不存在,說明理由;
②證明:不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com