已知函數(shù)滿足:(),
(1)用反證法證明:不可能為正比例函數(shù);
(2)若,求的值,并用數(shù)學歸納法證明:對任意的,均有:.
科目:高中數(shù)學 來源: 題型:解答題
對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若x=時,取得極值,求的值;
(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設,當=-1時,證明在其定義域內(nèi)恒成立,并證明().
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)當a=-2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>-1,且當x∈[,)時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知函數(shù)為有理數(shù)且),求函數(shù)的最小值;
(2)①試用(1)的結果證明命題:設為有理數(shù)且,若時,則;
②請將命題推廣到一般形式,并證明你的結論;
注:當為正有理數(shù)時,有求導公式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調區(qū)間;
(2)當時,函數(shù)恒成立,求實數(shù)的取值范圍;
(3)設正實數(shù)滿足.求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的定義域為,若在上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:,;
(Ⅲ)若是“一階比增函數(shù)”,且有零點,求證:有解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)滿足,其中a>0,a≠1.
(1)對于函數(shù),當x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數(shù)m的取值集合;
(2)當x∈(-∞,2)時,的值為負數(shù),求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com