11.已知f(x)=cosx(${2\sqrt{3}$sinx-cosx)+cos2(${\frac{π}{2}$-x)+1.
(Ⅰ)求函數(shù)f(x)的對稱軸;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,若不等式f(B)<m恒成立,求實數(shù)m的取值范圍.

分析 (Ⅰ)借助輔助角公式,將f(x)化簡為一個三角函數(shù)式,由此得到對稱軸.
(Ⅱ)由正弦定理得到A,由此得到B的范圍,即可得到f(B)的范圍.

解答 解:(Ⅰ)∵f(x)=cosx(${2\sqrt{3}$sinx-cosx)+cos2(${\frac{π}{2}$-x)+1
=$\sqrt{3}$sin2x-cos2x+1=2sin(2x-$\frac{π}{6}$)+1,
令2x-$\frac{π}{6}$=$\frac{π}{2}$+kπ,解得x=$\frac{π}{3}$+$\frac{kπ}{2}$,k∈Z,
∴函數(shù)f(x)的對稱軸為x=$\frac{π}{3}$+$\frac{kπ}{2}$,k∈Z,
(Ⅱ)在△ABC中,∵$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,由正弦定理得$\frac{cosA}{cosB}$=$\frac{sinA}{2sinC-sinB}$,
可變形得,sin(A+B)=2cosAsinC,即sinC=2cosAsinC,
∵sinC≠0,∴cosA=$\frac{1}{2}$,∵0<A<π,∴A=$\frac{π}{3}$,
∴f(B)=2sin(2B-$\frac{π}{6}$)+1,只需f(x)max<m,
∵0<B<$\frac{2π}{3}$,∴-$\frac{π}{6}$<2B-$\frac{π}{6}$<$\frac{7π}{6}$,
∴-$\frac{1}{2}$<sin(2B-$\frac{π}{6}$)≤1,即0<f(B)≤3,
∴m>3.

點評 本題考查三角函數(shù)的化簡以及由正弦定理得到最值問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.正方體ABCD-A1B1C1D1中,BD1與平面A1C1D所成的角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.$\underset{lim}{n→∞}$$\frac{n•{3}^{n}}{n(x-2)^{n}+n•{3}^{n+1}-{3}^{n}}$=$\frac{1}{3}$,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.點P是在△ABC所在平面上一點,若$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,AB=2,AC=3,∠A=60°.存在實數(shù)λ,μ,使$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則( 。
A.λ=$\frac{2}{3}$,μ=$\frac{1}{9}$B.λ=$\frac{1}{3}$,μ=$\frac{2}{9}$C.λ=$\frac{2}{3}$,μ=$\frac{1}{3}$D.λ=$\frac{2}{3}$,μ=$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分圖象如圖所示.
(1)求f(x)的解析式,并求函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{π}{4}$]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若m+2n=1(m>0,n>0),則$\frac{1}{2m}$+$\frac{1}{n}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,c=2,acosC=csinA,若當a=x0時的△ABC有兩解,則x0的取值范圍是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}和{bn}滿足a1a2…an=($\sqrt{2}$)${\;}^{_{n}}$,n∈N*,若{an}為等比數(shù)列,且a1=2,b3=6+b2
(Ⅰ)求a3及數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{1}{{a}_{n}}$-$\frac{1}{_{n}}$,n∈N*,記數(shù)列{cn}的前n項和為Sn
(i)求Sn
(ii)若Sk≥Sn恒成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.正四面體ABCD中,AB,BC,CD,DA的中點依次記為E,F(xiàn),G,H.直線EG與FH的關(guān)系是( 。
A.相交且垂直B.異面且垂直C.相交且不垂直D.異面且不垂直

查看答案和解析>>

同步練習冊答案