【題目】有下列四個命題:

, 互為相反數(shù)的逆命題;

②“若兩個三角形全等,則兩個三角形的面積相等的否命題;

,有實(shí)根的逆否命題;

不是等邊三角形,則的三個內(nèi)角相等逆命題;

其中真命題為( )

A. ①② B. ②③ C. ①③ D. ③④

【答案】C

【解析】, 互為相反數(shù)的逆命題為互為相反數(shù),則,正確;②若兩個三角形全等,則兩個三角形的面積相等的否命題為若兩個三角形不全等,則兩個三角形的面積不相等,錯誤;③,有實(shí)根的逆否命題為沒有實(shí)根,則,因?yàn)?/span>沒有實(shí)根,所以,可得,所以逆否命題正確;④不是等邊三角形,則的三個內(nèi)角相等逆命題為的三個內(nèi)角相等,則不是等邊三角形顯然錯誤,①③為真命題,故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計(jì)分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.

(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個車間為了規(guī)定工時定額,需要確定加工某種零件所花費(fèi)的時間,為此進(jìn)行了6次試驗(yàn),收集數(shù)據(jù)如下:

零件數(shù)(個)

加工時間(小時)

(Ⅰ)在給定的坐標(biāo)系中劃出散點(diǎn)圖,并指出兩個變量是正相關(guān)還是負(fù)相關(guān);

(Ⅱ)求回歸直線方程;

(Ⅲ)試預(yù)測加工個零件所花費(fèi)的時間?

附:對于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若,關(guān)于的不等式在區(qū)間上恒成立,求的取值范圍;

Ⅱ)若解關(guān)于的不等式;

Ⅲ)若,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)為,左準(zhǔn)線方程為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線交橢圓 兩點(diǎn).

①若直線經(jīng)過橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足 .求證: 為定值;

②若為原點(diǎn)),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條公路的交匯點(diǎn)處有一學(xué)校,現(xiàn)擬在兩條公路之間的區(qū)域內(nèi)建一工廠,在兩公路旁(異于點(diǎn))處設(shè)兩個銷售點(diǎn),且滿足,(千米),(千米),設(shè).

(1)試用表示,并寫出的范圍;

(2)當(dāng)為多大時,工廠產(chǎn)生的噪聲對學(xué)校的影響最。垂S與學(xué)校的距離最遠(yuǎn)).

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔選手參加“中國漢字聽寫大全”,某中學(xué)舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國漢字聽寫大會”,每次抽取1人,求在第1次抽取的成績低于90分的前提下,第2次抽取的成績?nèi)缘陀?0分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過A(0,1)和且與x軸相切的圓只有一個,求的值及圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案