16.函數(shù)f(x)=$\frac{x}{x-1}$(x≥2)的最大值為2.

分析 分離常數(shù)便可得到$f(x)=1+\frac{1}{x-1}$,根據(jù)反比例函數(shù)的單調(diào)性便可判斷該函數(shù)在[2,+∞)上為減函數(shù),從而x=2時f(x)取最大值,并可求出該最大值.

解答 解:$f(x)=\frac{x}{x-1}=\frac{x-1+1}{x-1}=1+\frac{1}{x-1}$;
∴f(x)在[2,+∞)上單調(diào)遞減;
∴x=2時,f(x)取最大值2.
故答案為:2.

點(diǎn)評 考查函數(shù)最大值的概念及求法,分離常數(shù)法的運(yùn)用,以及反比例函數(shù)的單調(diào)性,根據(jù)函數(shù)單調(diào)性求最值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)F為拋物線C:y2=4x的焦點(diǎn),曲線y=$\frac{k}{x}$(k>0)與C交于點(diǎn)P,PF⊥x軸,則k=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$.
①若a=0,則f(x)的最大值為2;
②若f(x)無最大值,則實(shí)數(shù)a的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,輸出s的值為( 。
A.8B.9C.27D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求證:DC⊥平面PAC;(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線l經(jīng)過橢圓的一個頂點(diǎn)和一個焦點(diǎn),若橢圓中心到l的距離為其短軸長的$\frac{1}{4}$,則該橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若變量x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,則x2+y2的最大值是(  )
A.4B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為( 。
A.9B.18C.20D.35

查看答案和解析>>

同步練習(xí)冊答案