6.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為(  )
A.9B.18C.20D.35

分析 由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的i,v的值,當(dāng)i=-1時(shí),不滿足條件i≥0,跳出循環(huán),輸出v的值為18.

解答 解:初始值n=3,x=2,程序運(yùn)行過(guò)程如下表所示:
v=1
i=2 v=1×2+2=4
i=1 v=4×2+1=9
i=0 v=9×2+0=18
i=-1 跳出循環(huán),輸出v的值為18.
故選:B.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的i,v的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\frac{x}{x-1}$(x≥2)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在如圖所示的圓臺(tái)中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺(tái)的一條母線.
(I)已知G,H分別為EC,F(xiàn)B的中點(diǎn),求證:GH∥平面ABC;
(Ⅱ)已知EF=FB=$\frac{1}{2}$AC=2$\sqrt{3}$,AB=BC,求二面角F-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正三角形ABC的邊長(zhǎng)為2$\sqrt{3}$,平面ABC內(nèi)的動(dòng)點(diǎn)P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最大值是( 。
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N+
(Ⅰ)若a2,a3,a2+a3成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)雙曲線x2-$\frac{{y}^{2}}{{{a}_{n}}^{2}}$=1的離心率為en,且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐的四個(gè)面都是腰長(zhǎng)為2的等腰三角形,該三棱錐的正視圖如圖所示,則該三棱錐的體積是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.閱讀如圖的程序圖,運(yùn)行相應(yīng)的程序,則輸出S的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在公差d>0的等差數(shù)列{an}中,若a2,a6為方程x2-8x+12=0的兩根,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時(shí)P的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案