若雙曲線
y2
5
-
x2
m
=1
的離心率e∈(1,2),則m的取值范圍為
(0,15)
(0,15)
分析:利用雙曲線的性質(zhì)可知m>0,求得a2,b2,c2,利用離心率e∈(1,2),即可求得m的取值范圍
解答:解:依題意5×(-m)<0,
∴m>0,
∴a2=5,b2=m,c2=5+m,
∴e2=
c2
a2
=
5+m
5

∵離心率e∈(1,2),
∴1<
5+m
5
<4,
∴0<m<15.
∴m的取值范圍為(0,15).
故答案為(0,15).
點(diǎn)評:本題考查雙曲線的簡單性質(zhì),求得e2=
5+m
5
是關(guān)鍵,考查轉(zhuǎn)化與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
|k|-2
+
y2
5-k
=1
表示雙曲線,則實(shí)數(shù)k的取值范圍是( 。
A、(-∞,-2)∪(2,5)
B、(-2,5)
C、(-∞,-2)∪(5,+∞)
D、(-2,2)∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題q:在x∈(0,2]內(nèi),不等式x2-
x
m
+3≥0恒成立;命題q:方程
x2
m-3
+
y2
5-m
=1表示雙曲線.
(1)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題:“p∨q”為真命題,且“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:對任意實(shí)數(shù),不等式x2-2x>m恒成立;命題:方程
x2
m-3
+
y2
5-m
=1
表示焦點(diǎn)在x軸上的雙曲線.
(Ⅰ)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若命題“p∨q””為真命題,且“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
y2
5
+
x2
k
=1與拋物線x2=12y有相同的焦點(diǎn),則k的值為( 。
A、4B、-4C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)命題P:對任意實(shí)數(shù),不等式x2-2x>m恒成立;命題:方程
x2
m-3
+
y2
5-m
=1
表示焦點(diǎn)在x軸上的雙曲線.
(Ⅰ)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若命題“p∨q””為真命題,且“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案