8.平面α的斜線與平面α所成的角是35°,則與平面α內(nèi)所有不過(guò)斜足的直線所成的角的范圍是( 。
A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]

分析 做出斜線與射影所確定的平面,則當(dāng)α內(nèi)的直線與射影平行時(shí).夾角最小為35°,當(dāng)直線與射影垂直時(shí),夾角最大為90°.

解答 解設(shè)平面α的斜線的斜足為B,過(guò)斜線上A點(diǎn)做平面α的垂線,垂足為C,則∠ABC=35°,
∴當(dāng)α內(nèi)的直線與BC平行時(shí),直線與斜線所成的角為35°,
當(dāng)α內(nèi)的直線與BC垂直時(shí),則此直線與平面ABC垂直,
∴直線與斜線所成的角為90°,
故選:D.

點(diǎn)評(píng) 本題考查了線面角的定義,異面直線所成的角的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線y=x+m和圓x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{AO}•\overrightarrow{AB}=\frac{3}{2}$,則實(shí)數(shù)m=( 。
A.±1B.$±\frac{{\sqrt{3}}}{2}$C.$±\frac{{\sqrt{2}}}{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知圓C:(x-1)2+(y-2)2=2,則圓C被動(dòng)直線l:kx-y+2-k=0所截得的弦長(zhǎng)2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16. 已知三棱柱ABC-A1B1C1中,A1A⊥底面ABC,∠BAC=90°,A1A=1,$AB=\sqrt{3}$,AC=2,E、F分別為棱C1C、BC的中點(diǎn).
(Ⅰ)求證 AC⊥A1B;
(Ⅱ)求直線EF與A1B所成的角;
(Ⅲ)若G為線段A1A的中點(diǎn),A1在平面EFG內(nèi)的射影為H,求∠HA1A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知直線ax-by+c=0(abc≠0)與圓O:x2+y2=1相離,且|a|+|b|>|c|,則|a|,|b|,|c|為邊長(zhǎng)的三角形是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知邊長(zhǎng)為3的正△ABC三個(gè)頂點(diǎn)都在球O的表面上,且OA與平面ABC所成的角為30°,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.三棱錐D-ABC內(nèi)接于表面積為100π的球面,DA⊥平面ABC,且AB=8,AC⊥BC,∠BAC=30°,則三棱錐D-ABC的體積為16$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,G為ABC的重心,BE=$\frac{1}{3}$BC1
(1)求證:GE∥平面AA1B1B;
(2)若側(cè)面ABB1A1⊥底面ABC,∠A1AB=∠BAC=60°,AA1=AB=AC=2,求直線A1B與平面B1GE所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù)只有1天的概率( 。
A.$\frac{1}{13}$B.$\frac{2}{13}$C.$\frac{3}{13}$D.$\frac{4}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案