分析 由約束條件作出可行域,利用數(shù)量積的坐標(biāo)表示求得$\overrightarrow{OA}•\overrightarrow{OP}$,得到線性目標(biāo)函數(shù),化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$作出可行域如圖,
又$\overrightarrow{OA}•\overrightarrow{OP}=(3,1)•(x,y)=3x+y$,
設(shè)z=3x+y,
聯(lián)立$\left\{\begin{array}{l}{x-2y+4=0}\\{3x-y-3=0}\end{array}\right.$,解得:B(2,3),
又C(2,3),
化目標(biāo)函數(shù)z=3x+y為y=-3x+z,
由圖可知,當(dāng)直線y=-3x+z過(guò)C時(shí),zmin=2;
當(dāng)直線y=-3x+z過(guò)B時(shí),zmax=9.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了平面向量的數(shù)量積運(yùn)算,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 005 | B. | 4 006 | C. | 4 007 | D. | 4 008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com