精英家教網 > 高中數學 > 題目詳情
12.已知實數x,y滿足$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,則$\frac{y-2}{x-4}$的最大值為$\frac{6}{7}$.

分析 作出不等式組對應的平面區(qū)域,利用斜率的幾何意義進行求解即可.

解答 解:作出不等式組對應的平面區(qū)域如圖:
$\frac{y-2}{x-4}$的幾何意義是區(qū)域內的點到定點D(4,2)的斜率,
由圖象知AD的斜率最大,
由$\left\{\begin{array}{l}{x+3=0}\\{x-y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-3}\\{y=-4}\end{array}\right.$,即A(-3,-4),
此時AD的斜率k=$\frac{y-2}{x-4}$=$\frac{-4-2}{-3-4}$=$\frac{6}{7}$,
故答案為:$\frac{6}{7}$.

點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數的幾何意義結合直線的斜率公式是解決問題的關鍵,利用數形結合是解決問題的基本方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.△ABC是球的一個截面的內接三角形,其中AB=18,BC=24、AC=30,球心到這個截面的距離為球半徑的一半,則球的半徑等于(  )
A.10B.$10\sqrt{3}$C.15D.$15\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知a>0且a≠1,函數f(x)=4+loga(x+4)的圖象恒過定點P,若角α的終邊經過點P,則cosα的值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.某投資公司準備在2016年年底將1000萬元投資到某“低碳”項目上,據市場調研,該項目的年投資回報率為20%.該投資公司計劃長期投資(每一年的利潤和本金繼續(xù)用作投資),若市場預期不變,大約在2020年的年底總資產(利潤+本金)可以翻一番.(參考數據:lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖,在平面四邊形ABCD中,$\overrightarrow{BA}•\overrightarrow{BC}=32$.
(1)若$\overrightarrow{BA}$與$\overrightarrow{BC}$的夾角為30°,求△ABC的面積S△ABC;
(2)若$|{\overrightarrow{AC}}|=4,O$為AC的中點,G為△ABC的重心(三條中線的交點),且$\overrightarrow{OG}$與$\overrightarrow{OD}$互為相反向量,求$\overrightarrow{AD}•\overrightarrow{CD}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側面PBC是直角三角形,∠PCB=90°,點E是PC的中點,且平面PBC⊥平面ABCD.
求證:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知F1,F2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩個焦點,PQ是經過F1且垂直于x軸的雙曲線的弦,若∠PF2Q=90°,則雙曲線的離心率為( 。
A.2B.$2\sqrt{2}$C.$\sqrt{2}-1$D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.如圖,在平行四邊形ABCD中,$∠BAD=\frac{π}{3}$,AB=2,AD=1,若M、N分別是邊BC、CD上的點,且滿足$\frac{BM}{BC}=\frac{NC}{DC}=λ$,其中λ∈[0,1],則$\overrightarrow{AM}•\overrightarrow{AN}$的取值范圍是(  )
A.[0,3]B.[1,4]C.[2,5]D.[1,7]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.方程xy2+x2y=1所表示的曲線(  )
A.關于x軸對稱B.關于y軸對稱C.關于原點對稱D.關于直線y=x對稱

查看答案和解析>>

同步練習冊答案