6.點(diǎn)(x,y)是如圖所示的坐標(biāo)平面的可行域內(nèi)(陰影部分且包括邊界)的任意一點(diǎn),若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個(gè),則$\frac{y}{x-a}$的最大值是( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{4}$

分析 由題設(shè)條件,目標(biāo)函數(shù)z=x+ay,取得最小值的最優(yōu)解有無數(shù)個(gè)值取得最優(yōu)解必在邊界上而不是在頂點(diǎn)上,故目標(biāo)函數(shù)中系數(shù)必為負(fù),最小值應(yīng)在左上方邊界AC上取到,即x+ay=0應(yīng)與直線AC平行,進(jìn)而計(jì)算可得a值,最后結(jié)合目標(biāo)函數(shù)$\frac{y}{x-a}$的幾何意義求出答案即可

解答 解:由題意,最優(yōu)解應(yīng)在線段AC上取到,故x+ay=0應(yīng)與直線AC平行
∵kAC=$\frac{2-0}{4-2}$,
∴-$\frac{1}{a}$=1,
∴a=-1,
則$\frac{y}{x-a}$=$\frac{y-0}{x-(-1)}$表示點(diǎn)P(-1,0)與可行域內(nèi)的點(diǎn)Q(x,y)連線的斜率,
由圖得,當(dāng)Q(x,y)=C(4,2)時(shí),
其取得最大值,最大值是$\frac{2}{4-(-1)}$=$\frac{2}{5}$
故選:B.

點(diǎn)評 本題考查線性規(guī)劃最優(yōu)解的判定,屬于該知識的逆用題型,利用最優(yōu)解的特征,判斷出最優(yōu)解的位置求參數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定義集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},則A⊕B中元素的個(gè)數(shù)為( 。
A.77B.49C.45D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},則(∁RP)∩Q=( 。
A.[0,1)B.(0,2]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)=lnx,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),r=$\frac{1}{2}$(f(a)+f(b)),則下列關(guān)系式中正確的是( 。
A.q=r<pB.p=r<qC.q=r>pD.p=r>q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F(-1,0),離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P(1,0),Q($\frac{5}{4}$,0),過P的直線l交橢圓C于A,B兩點(diǎn),求$\overrightarrow{QA}•\overrightarrow{QB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(diǎn).
(Ⅰ)求證:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH與平面ACFD所成的角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,A、B、C、D為平面四邊形ABCD的四個(gè)內(nèi)角.
(Ⅰ)證明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$;
(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列 {an}的前n項(xiàng)和為Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn-1
(1)求a4的值;
(2)證明:{an+1-$\frac{1}{2}$an}為等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.重慶市2013年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如,則這組數(shù)據(jù)的中位數(shù)是( 。
A.19B.20C.21.5D.23

查看答案和解析>>

同步練習(xí)冊答案