1.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是( 。
A.00011B.11001C.10100D.10110

分析 首先理解⊕的運(yùn)算規(guī)則,然后各選項(xiàng)依次通過逆運(yùn)算,分析即可.

解答 解:A選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,A選項(xiàng)正確;
B選項(xiàng)原信息為100,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕0=1,所以傳輸信息為11001,B選項(xiàng)正確;
C選項(xiàng)原信息為010,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕0=1,所以傳輸信息為10101,C選項(xiàng)不正確;
D選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,D選項(xiàng)正確;
故選:C.

點(diǎn)評(píng) 本題考查對(duì)新規(guī)則的閱讀理解能力,考查邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示,四邊形ABCD和BCEF都是平行四邊形.
(1)寫出與$\overrightarrow{BC}$相等的向量:$\overrightarrow{AD}$,$\overrightarrow{FE}$;
(2)寫中與$\overrightarrow{BC}$共線的向量:$\overrightarrow{AD}$,$\overrightarrow{FE}$,$\overrightarrow{DA}$,$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$2-$\overrightarrow$2;
(3)(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$);
(4)|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.把-1125°表示為2kπ+α(k∈Z,0≤α<2π)的形式是-8π+$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知方程x2+y2+($\sqrt{3}$t+1)x+ty+t2-2=0表示一個(gè)圓.
(1)求t的取值范圍;
(2)若圓的直徑為6,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓的方程為x2+y2=4,過點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為S,T,直線ST恰好經(jīng)過橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)橢圓C與x軸交于S,Q點(diǎn),已知點(diǎn)P滿足$\overrightarrow{PS}•\overrightarrow{PQ}$=0,點(diǎn)A,B在橢圓C上且$\overrightarrow{OA}•\overrightarrow{OB}$=0(O為坐標(biāo)原點(diǎn)),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知直角三角形周長(zhǎng)為48cm,一銳角交平分線分對(duì)邊為3:5兩部分.
(1)求直角三角形的三邊長(zhǎng);
(2)求兩直角邊在斜邊上的射影的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.三棱錐A-BCD中,△BCD是邊長(zhǎng)為1的正三角形,點(diǎn)A在平面BCD上的射影為△BCD的中心,E,F(xiàn)分別是BC,BA的中點(diǎn),EF⊥FD,則三棱錐A-BCD的體積為$\frac{\sqrt{2}}{24}$,直線AB與平面BCD所成角的正弦值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知四棱錐P-ABCD,底面ABCD為邊長(zhǎng)為2對(duì)的菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)判定AE與PD是否垂直,并說明理由;
(2)若PA=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案