【題目】為實(shí)現(xiàn)國民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實(shí)施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見下表:

實(shí)施項(xiàng)目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實(shí)施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

【答案】C

【解析】

首先算出2019年的年脫貧率,再與年以前的年均脫貧率相比即可.

由圖表得,2019年的年脫貧率為

.

所以年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場更新技術(shù)培育了一批新型的“盆栽果樹”,這種“盆栽果樹”將一改陸地栽植果樹只在秋季結(jié)果的特性,能夠一年四季都有花、四季都結(jié)果.現(xiàn)為了了解果樹的結(jié)果情況,從該批果樹中隨機(jī)抽取了容量為120的樣本,測量這些果樹的高度(單位:厘米),經(jīng)統(tǒng)計將所有數(shù)據(jù)分組后得到如圖所示的頻率分布直方圖.

1)求;

2)已知所抽取的樣本來自兩個實(shí)驗(yàn)基地,規(guī)定高度不低于40厘米的果樹為“優(yōu)品盆栽”,

i)請將圖中列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“優(yōu)品盆栽”與兩個實(shí)驗(yàn)基地有關(guān)?

優(yōu)品

非優(yōu)品

合計

基地

60

基地

20

合計

ii)用樣本數(shù)據(jù)來估計這批果樹的生長情況,若從該農(nóng)場培育的這批“盆栽果樹”中隨機(jī)抽取4棵,求其中“優(yōu)品盆栽”的棵樹的分布列和數(shù)學(xué)期望.

附:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,G的重心,過點(diǎn)G作三棱錐的一個截面,使截面平行于直線PBAC,則截面的周長為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2lnx+1

1)若fx≤2x+c,求c的取值范圍;

2)設(shè)a>0時,討論函數(shù)gx=的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:

則下面結(jié)論中正確的是(

A.新農(nóng)村建設(shè)后,種植收入減少

B.新農(nóng)村建設(shè)后,其他收入增加了

C.新農(nóng)村建設(shè)后,養(yǎng)殖收入沒有增加

D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時,取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);

當(dāng)函數(shù)有兩個極值點(diǎn),,且時,總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)fx=有如下四個命題:

fx)的圖像關(guān)于y軸對稱.

fx)的圖像關(guān)于原點(diǎn)對稱.

fx)的圖像關(guān)于直線x=對稱.

fx)的最小值為2

其中所有真命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民收入也逐年增加.為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了201850位農(nóng)民的年收入并制成如下頻率分布直方圖:

附:參考數(shù)據(jù)與公式 ,若 ,則① ;② ;③ .

1)根據(jù)頻率分布直方圖估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

2)由頻率分布直方圖可以認(rèn)為該貧困地區(qū)農(nóng)民年收入 X 服從正態(tài)分布 ,其中近似為年平均收入 近似為樣本方差 ,經(jīng)計算得:,利用該正態(tài)分布,求:

i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

ii)為了調(diào)研精準(zhǔn)扶貧,不落一人的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個農(nóng)民的年收入相互獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、、成等比數(shù)列.

1)求橢圓的方程;

2)斜率不為的動直線過點(diǎn)且與橢圓相交于兩點(diǎn),記,線段上的點(diǎn)滿足,試求為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案