已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(4,2),則f(x)的增區(qū)間為( 。
A、(-∞,+∞)
B、(-∞,0)
C、(0,+∞)
D、(1,+∞)
考點(diǎn):冪函數(shù)的單調(diào)性、奇偶性及其應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)冪函數(shù)f(x)=xn,代入點(diǎn)(4,2),解出n,再判斷單調(diào)增區(qū)間.
解答: 解:設(shè)冪函數(shù)f(x)=xn,
則4n=2,解得,n=
1
2
,
即有f(x)=
x
,
則有x≥0,
則增區(qū)間為(0,+∞).
故選C.
點(diǎn)評(píng):本題考查冪函數(shù)的解析式和單調(diào)區(qū)間,注意運(yùn)用待定系數(shù)法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga
x+2
x-2
(a>0
,且a≠1).
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(Ⅱ)當(dāng)0<a<1時(shí),判斷函數(shù)f(x)在區(qū)間(2,+∞)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到y(tǒng)=2-x+1的圖象只需要將y=(
1
2
)
x
的圖象( 。
A、上移1個(gè)單位
B、右移1個(gè)單位
C、左移1個(gè)單位
D、先關(guān)于y軸對(duì)稱再左移1個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x-1
,若x∈[2,6],則該函數(shù)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-2|2|x|-1|+1和g(x)=x2-2|x|+m(m∈R)是定義在R上的兩個(gè)函數(shù),給出下列4 個(gè)命題:
①關(guān)于x的方程f(x)-k=0恰有四個(gè)不相等實(shí)數(shù)根的充要條件是k∈(-1,1);
②關(guān)于x的方程f(x)=g(x)恰有四個(gè)不相等實(shí)數(shù)根的充要條件是m∈[0,1];
③當(dāng)m=1時(shí),對(duì)?x1∈[-1,0],?x2∈[-1,0],f(x1)<g(x2)成立;
④若?x1∈[-1,1],?x2∈[-1,1],f(x1)<g(x2)成立,則m∈(-1,+∞).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,an+1=2an(n∈N*),則a10=( 。
A、19
B、21
C、29
D、210

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
3
,b=2
2
,B=45°,則A等于( 。
A、30°
B、60°
C、60°或120°
D、30°或150

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lg(3-2x-x2)的增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α是三角形的內(nèi)角,且sinα=
1
2
,則α等于(  )
A、30°B、30°或150°
C、60°D、120°

查看答案和解析>>

同步練習(xí)冊(cè)答案