【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,根據(jù)圖象:

(1)請(qǐng)將函數(shù)的圖象補(bǔ)充完整并寫出該函數(shù)的增區(qū)間(不用證明).

(2)求函數(shù)的解析式.

(3)若函數(shù),求函數(shù)的最小值.

【答案】(1)圖見解析,增區(qū)間為;(2)(3)

【解析】

1)根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,可作出的圖象,由圖象可得的單調(diào)遞增區(qū)間;(2)令,則,根據(jù)條件可得,利用函數(shù)是定義在上的偶函數(shù),可得,從而可得函數(shù)的解析式;(3)先求出拋物線對(duì)稱軸,然后分當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí)三種情況,根據(jù)二次函數(shù)的增減性解答.

解:(1)如圖:

函數(shù)的增區(qū)間為.

(2)當(dāng)時(shí),,

又∵上的偶函數(shù),∴,

(3)∵,∴,∴

對(duì)稱軸.

當(dāng),即時(shí),,

當(dāng),即時(shí),,

當(dāng),即時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ< )圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再向右平移 個(gè)單位長(zhǎng)度得到y(tǒng)=cosx的圖象,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[4kπ﹣ ,kπ﹣ ](k∈Z)
D.[4kπ﹣ ,kπ+ ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),l: (t為參數(shù))
(1)求曲線C的普通方程,l的直角坐標(biāo)方程
(2)設(shè)l與C交于M,N兩點(diǎn),點(diǎn)P(﹣2,0),若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大。
(Ⅱ)求 sinA+sin(C﹣ )的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x﹣2)[f′(x)﹣f(x)]>0,且f(4﹣x)=e42xf(x),則下列關(guān)于 f(x)的命題正確的是(
A.f(3)>e2f(1)
B.f(3)<ef(2)
C.f(4)<e4f(0)
D.f(4)<e5f(﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C1的參數(shù)方程為 ,(α為參數(shù),且α∈[0,π]),曲線C2的極坐標(biāo)方程為ρ=﹣2sinθ.
(Ⅰ)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(Ⅱ)若P是C1上任意一點(diǎn),過點(diǎn)P的直線l交C2于點(diǎn)M,N,求|PM||PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃明年用不超過6千萬(wàn)元的資金投資于本地養(yǎng)魚場(chǎng)和遠(yuǎn)洋捕撈隊(duì).經(jīng)過本地養(yǎng)魚場(chǎng)年利潤(rùn)率的調(diào)研,得到如圖所示年利潤(rùn)率的頻率分布直方圖.對(duì)遠(yuǎn)洋捕撈隊(duì)的調(diào)研結(jié)果是:年利潤(rùn)率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設(shè)該公司投資本地養(yǎng)魚場(chǎng)的資金為x(x≥0)千萬(wàn)元,投資遠(yuǎn)洋捕撈隊(duì)的資金為y(y≥0)千萬(wàn)元.
(1)利用調(diào)研數(shù)據(jù)估計(jì)明年遠(yuǎn)洋捕撈隊(duì)的利潤(rùn)ξ的分布列和數(shù)學(xué)期望Eξ.
(2)為確保本地的鮮魚供應(yīng),市政府要求該公司對(duì)本地養(yǎng)魚場(chǎng)的投資不得低于遠(yuǎn)洋捕撈隊(duì)的一半.適用調(diào)研數(shù)據(jù),給出公司分配投資金額的建議,使得明年兩個(gè)項(xiàng)目的利潤(rùn)之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=4cosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點(diǎn)M(5,6),且斜率為
(1)求圓 C的平面直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓C交于A,B兩點(diǎn),求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖框圖,已知輸出的s∈[0,4],若輸入的t∈[m,n],則實(shí)數(shù)n﹣m的最大值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案