18.函數(shù)y=log0.5(x2-3x-10)的遞增區(qū)間是( 。
A.(-∞,-2)B.(5,+∞)C.(-∞,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

分析 求出函數(shù)的定義域,利用換元法結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系進行求解即可.

解答 解:由x2-3x-10>0,得x>5或x<-2,即函數(shù)的定義域為(-∞,-2)∪(5,+∞),
設(shè)t=x2-3x-10,則y=log0.5t是減函數(shù),
根據(jù)復(fù)合函數(shù)單調(diào)性的性質(zhì),
要求函數(shù)y=log0.5(x2-3x-10)的遞增區(qū)間,
即求設(shè)t=x2-3x-10的單調(diào)遞減區(qū)間,
∵t=x2-3x-10的單調(diào)遞減區(qū)間是(-∞,-2),
則所求函數(shù)的遞增區(qū)間為(-∞,-2),
故選:A

點評 本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)函數(shù)函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.注意要先求函數(shù)的定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在極坐標(biāo)系中,圓 C以點C(2,$\frac{π}{3}$)為圓心,2為半徑.在以極點為原點,以極軸為x軸正半軸且單位長度一樣的直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A,B.若點P的坐標(biāo)為(2,$\sqrt{3}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)已知產(chǎn)量x和能耗y呈線性關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式;$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\widehat{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z滿足$\frac{z+i}{1-i}$=2+i,則z=( 。
A.3+2iB.2-3iC.3-2iD.2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合 A={x∈R|(x-1)(x-3)≤0},B={-1,1,2,3},則A∩B等( 。
A.{1,2}B.{2,3}C.{1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.對于函數(shù)f(x)=max(sinx,cosx),下列說法中不正確的是①④⑤.(填上你認(rèn)為不正確的說法的全部序號)
①f(x)的定義域是R;②f(x)的值域是[-1,1];③f(x)是一個奇函數(shù);
④x=2kπ或2kπ+$\frac{π}{2}$,k∈Z時,f(x)的最大值是1;⑤f(x)的最小正周期是2π;
⑥f(x)的遞增區(qū)間是[2kπ+$\frac{π}{4}$,2kπ+$\frac{π}{2}$]∪[2kπ+$\frac{5π}{4}$,2kπ+2π],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若把-570°寫成2kπ+α(k∈Z,0≤α<2π)的形式,則α=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若二項式(2x+$\frac{a}{x}$)5的展開式中$\frac{1}{x}$的系數(shù)是40,則實數(shù)a=(  )
A.2B.$\root{5}{4}$C.1D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的函數(shù)f(x)是奇函數(shù),若f(-2)+f(0)+f(3)=2,則f(2)-f(3)的值是-2.

查看答案和解析>>

同步練習(xí)冊答案