精英家教網(wǎng)已知一個空間幾何體的三視圖如圖所示,且這個空間幾何體的所有頂點(diǎn)都在一個球面上,則球的表面積是
 
分析:由三視圖知,幾何體是一個三棱柱,三棱柱的底面是邊長為2的正三角形,側(cè)棱長是2,根據(jù)三棱柱的兩個底面的中心的中點(diǎn)與三棱柱的頂點(diǎn)的連線就是外接球的半徑,求出半徑即可求出球的表面積.
解答:精英家教網(wǎng)解:由三視圖知,幾何體是一個三棱柱,三棱柱的底面是邊長為2的正三角形,側(cè)棱長是2,
三棱柱的兩個底面的中心的中點(diǎn)與三棱柱的頂點(diǎn)的連線就是外接球的半徑,
r=
(
2
3
×
3
)
2
+12
=
7
3
,球的表面積4πr2=4π×
7
3
=
28
3
π.
故答案是
28
3
π.
點(diǎn)評:本題考查了由三視圖求三棱柱的外接球的表面積,利用棱柱的幾何特征求外接球的半徑是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積(單位:cm3)是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、已知一個空間幾何體的三視圖如圖所示,其中主視圖面積為15.5,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的表面積是
121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知一個空間幾何體的三視圖如圖所示,其中正視圖、側(cè)視圖都是由半圓和矩形組成,根據(jù)圖中標(biāo)出的尺寸 (單位:cm),可得這個幾何體的體積是
3
cm3
3
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)已知一個空間幾何體的三視圖如右圖所示,它們是半徑為4的半圓或圓,則該幾何體的表面積為
32π
32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•馬鞍山模擬)已知一個空間幾何體的三視圖如圖,主視圖和側(cè)視圖均由一個正三角形和一個半圓組成,則該幾何體的體積為
2(
3
+π)
3
latex=“
2(
3
+π)
3
“>2(3+π)3
2(
3
+π)
3
latex=“
2(
3
+π)
3
“>2(3+π)3

查看答案和解析>>

同步練習(xí)冊答案