已知i是虛數(shù)單位,復數(shù)z=
4+3i
1+2i
,則z的共軛復數(shù)
.
z
等于(  )
A、-2+iB、-2-i
C、2+iD、2-i
考點:復數(shù)代數(shù)形式的混合運算
專題:數(shù)系的擴充和復數(shù)
分析:根據(jù)兩個復數(shù)代數(shù)形式的乘除法法則求得 z=2-i,由此求得它的共軛復數(shù).
解答: 解:復數(shù)z=
4+3i
1+2i
=
(4+3i)(1-2i)
(1+2i)(1-2i)
=
10-5i
5
=2-i,故z的共軛復數(shù)等于2+i,
故選:C.
點評:本題主要考查兩個復數(shù)代數(shù)形式的乘除法,復數(shù)的基本概念,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知某二次函數(shù)圖象的頂點為A(2,-18),它與x軸兩個交點之間的距離為6,則該二次函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax2+2(a-2)x+3在區(qū)間(-∞,3]上為減函數(shù),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a2+a3=1,a4+a5=2,則a6+a7等于( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),數(shù)列{an}的通項公式是an=f(n),n∈N*,那么“函數(shù)y=f(x)在[1,+∞﹚上單調(diào)遞增”是“數(shù)列{an}是遞增數(shù)列”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

球面上有M、N兩點,在過M、N的球的大圓上,
MN
的度數(shù)為90°,在過M、N的球小圓上,
MN
的度數(shù)為120°,又MN=
3
cm,則球心到上述球小圓的距離是( 。
A、
1
2
cm
B、
2
2
cm
C、
3
2
cm
D、1cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=
2i+1
1+i
(i為虛數(shù)單位),則復數(shù)z在復平面內(nèi)對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,過左焦點F(-
3
,0)且斜率為k的直線交橢圓E于A,B兩點,線段AB的中點為M,直線l:x+4ky=0交橢圓E于C,D兩點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:點M在直線l上;
(Ⅲ)是否存在實數(shù)k,使得四邊形AOBC為平行四邊形?若存在求出k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別是F1、F2,焦距為2c,一條直線過點E(
a2
c
,0
)交橢圓于A、B兩點,且F1A∥F2B,|F1A|=2|F2B|
(1)求橢圓離心率e;
(2)求橢圓方程.

查看答案和解析>>

同步練習冊答案