12.設(shè)n=$\int_0^{\frac{π}{2}}$4sinxdx,則(x+$\frac{2}{x}$)(x-$\frac{2}{x}$)n的展開式中各項(xiàng)系數(shù)和為( 。
A.1B.2C.3D.4

分析 利用微積分基本定理可得:n=4,令x=1,可得(x+$\frac{2}{x}$)$(x-\frac{2}{x})^{4}$的展開式中各項(xiàng)系數(shù)和.

解答 解:n=$\int_0^{\frac{π}{2}}$4sinxdx=$(-4cosx){|}_{0}^{\frac{π}{2}}$=4,
令x=1,可得(x+$\frac{2}{x}$)$(x-\frac{2}{x})^{4}$的展開式中各項(xiàng)系數(shù)和=3×(-1)4=3.
故選:C.

點(diǎn)評(píng) 本題考查了微積分基本定理、二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓O:x2+y2=1的切線l與橢圓C:x2+3y2=4相交于A、B、兩點(diǎn).
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右焦點(diǎn),A,B分別為橢圓的上,下頂點(diǎn).過橢圓的右焦點(diǎn)F2的直線交橢圓于C,D兩點(diǎn).△F1CD的周長為8,且直線AC,BC的斜率之積為-$\frac{1}{4}$.則橢圓的方程為( 。
A.$\frac{x^2}{2}$+y2=1B.$\frac{x^2}{3}$+$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=a$\sqrt{x}$,且f′(1)=1,則實(shí)數(shù)a=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊長分別為a,b,c,G為三角形的重心,且滿足$\sqrt{3}$(a$\overrightarrow{GA}$+b$\overrightarrow{GB}$)+c$\overrightarrow{GC}$=$\overrightarrow{0}$,則角C=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)有關(guān)x的一元二次方程x2-ax+b2=0,若a是從區(qū)間[0,6]任取的一個(gè)數(shù),b是從區(qū)間[0,4]任取的一個(gè)數(shù),則上述方程有實(shí)根的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{3}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=exsin(2x+1),則f′(-$\frac{1}{2}$)=2${e}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn),且滿足3$\overrightarrow{PA}$+5$\overrightarrow{PB}$+2$\overrightarrow{PC}$=$\overrightarrow{0}$,已知△ABC的面積為6,則△PAC的面積為( 。
A.$\frac{9}{2}$B.4C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)y=sin2x的圖象向右平移$\frac{π}{4}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,則所得圖象對應(yīng)的函數(shù)解析式是( 。
A.y=-cos4xB.y=-cosxC.y=sin(x+$\frac{π}{4}$)D.y=-sinx

查看答案和解析>>

同步練習(xí)冊答案