已知在△ABC中,2cosBsinC=sinA,則△ABC一定為( 。
A、等腰三角形B、直角三角形
C、鈍角三角形D、正三角形
考點(diǎn):三角形的形狀判斷
專題:解三角形
分析:利用兩角和與差的正弦可得sin(B-C)=0,繼而可得B=C,可得答案.
解答: 解:在△ABC中,∵2cosBsinC=sinA=sin(π-A)=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC-cosBsinC=sin(B-C)=0,
∴B=C,
∴△ABC一定為等腰三角形,
故選:A.
點(diǎn)評(píng):本題考查三角形的形狀的判斷,著重考查兩角和與差的正弦及誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2,x∈[o,1]
2-x,x∈[1,2]
則函數(shù)f(x)的圖象與x軸圍成封閉區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若f(x)=2x2+1,φ(x)=cosx,則f
φ(x)
 
=
 

(2)若f(x)=cosx,φ(x)=2x2+1,則f
φ(x)
 
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
2x-y+6≥0
x+y≥0
x≤2
,若目標(biāo)函數(shù)z=-mx+y的最大值為-2m+10,最小值為-2m-2,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,x都為整數(shù),且滿足(
1
x
+
1
y
)(
1
x2
+
1
y2
)=-
2
3
1
x4
-
1
y4
),則x+y的可能值有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+log2
x
9-x
,則f(1)+f(2)+f(3)+…+f(8)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面坐標(biāo)系xOy之中,點(diǎn)A(0,-n),B(0,n)(n>0),命題p:若存在某個(gè)點(diǎn)P在圓(x+
3
2+(y-1)2=1上,使得∠APB=
π
2
,則1≤n≤3;命題q:函數(shù)f(x)=
4
3
-log3x在區(qū)間(3,4)內(nèi)沒有零點(diǎn),下列命題為真命題的是( 。
A、p∧(¬q)
B、p∧q
C、(¬p)∧q
D、(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2x+2
x-1
(x>1),當(dāng)且僅當(dāng)x=
 
時(shí),f(x)取到最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為AB上一點(diǎn),CD=21,AC=31,AD=20,∠B=60°,則BC的長為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案