【題目】設(shè){an}是各項(xiàng)都為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a3+b5=13,a5+b3=21.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求數(shù)列{Snbn}的前n項(xiàng)和Tn

【答案】解:(Ⅰ)設(shè)各項(xiàng)都為正數(shù)的等比數(shù)列{an}的公比是q,且q>0,等差數(shù)列{bn}的公差是d,
∵a1=b1=1,a3+b5=13,a5+b3=21,
,即 ,
整理,得2q4﹣q2﹣28=0,q>0
解得d=2,q=2,
∴an=2n1 , bn=1+(n﹣1)d=2n﹣1.
(Ⅱ)∵{an}是首項(xiàng)為1,公比為2的等比數(shù)列,
∴Sn= =2n﹣1,
∵bn=2n﹣1,
∴Snbn=(2n﹣1)(2n﹣1)=(2n﹣1)2n﹣2n+1,
∴Tn=[1×2+3×22+5×23+…+(2n﹣1)2n]﹣2(1+2+3+…+n)+n,
設(shè)S=1×2+3×22+5×23+…+(2n﹣1)2n , ①
則2S=1×22+3×23+5×24+…+(2n﹣1)×2n+1 , ②
①﹣②,得:
﹣S=2+22+23+…+2n﹣(2n﹣1)2n+1
= ﹣(2n﹣1)2n+1
=2n+1﹣2﹣(2n﹣1)2n+1 ,
∴S=2+(n+1)2n+2 ,
∴Tn=[1×2+3×22+5×23+…+(2n﹣1)2n]﹣2(1+2+3+…+n)+n
=2+(n+1)2n+2﹣2× +n
=(n+1)2n+2﹣n2+2.
【解析】(Ⅰ)由已知條件,利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式建立方程組,求出公差和公比,由此能求出數(shù)列{an},{bn}的通項(xiàng)公式.(Ⅱ)先求出數(shù)列{an}的前n項(xiàng)和Sn , 再求出Snbn的表達(dá)式,然后利用分組求和法、錯(cuò)位相減法和等等數(shù)列前n項(xiàng)和公式能求出Tn
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分如圖所示,一根水平放置的長(zhǎng)方體枕木的安全負(fù)荷與它的厚度d的平方寬度a的乘積成正比,同時(shí)與它的長(zhǎng)度的平方成反比

1a>d>0的條件下,將此枕木翻轉(zhuǎn)90°即寬度變?yōu)榱撕穸?/span>,枕木的安全負(fù)荷會(huì)發(fā)生變化嗎?變大還是變小?

2現(xiàn)有一根橫截面為半圓半圓的半徑為R=的柱形木材,用它截取成橫截面為長(zhǎng)方形的枕木,其長(zhǎng)度即為枕木規(guī)定的長(zhǎng)度l,問橫截面如何截取,可使安全負(fù)荷最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)a=1時(shí),x0∈[1e]使不等式f(x0m,求實(shí)數(shù)m的取值范圍;

(2)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;

(2)若曲線, 相交于兩點(diǎn), 的中點(diǎn)為,過點(diǎn)做曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 設(shè)an是Sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線y=x+2上.
(Ⅰ)求an , bn
(Ⅱ)若數(shù)列{bn}的前n項(xiàng)和為Bn , 比較 + +…+ 與1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,證明f(x)的圖象與x軸有2個(gè)交點(diǎn);
(2)在(1)的條件下,是否存在m∈R,使得f(m)=﹣a成立時(shí),f(m+3)為正數(shù),若存在,證明你的結(jié)論,若不存在,請(qǐng)說明理由;
(3)若對(duì)x1 , x2∈R,且x1<x2 , f(x1)≠f(x2),方程f(x)= [f(x1)+f(x2)]有兩個(gè)不等實(shí)根,證明必有一個(gè)根屬于(x1 , x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn)

(1)若直線平行于,與圓相交于, 兩點(diǎn), ,求直線的方程;

(2)在圓C上是否存在點(diǎn)P,使得 ?若存在,求點(diǎn)P的個(gè)數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊弓形余布料EMF,點(diǎn)M為弧的中點(diǎn),其所在圓O的半徑為4 dm(圓心O在弓形EMF內(nèi)),∠EOF=.將弓形余布料裁剪成盡可能大的矩形ABCD(不計(jì)損耗), ADEF,且點(diǎn)AD在弧上,設(shè)∠AOD=

(1)求矩形ABCD的面積S關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)矩形ABCD的面積最大時(shí),求cos的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2,圓心角為 的扇形金屬材料中剪出一個(gè)四邊形MNQP,其中M、N兩點(diǎn)分別在半徑OA、OB上,P、Q兩點(diǎn)在弧 上,且OM=ON,MN∥PQ.
(1)若M、N分別是OA、OB中點(diǎn),求四邊形MNQP面積的最大值.
(2)PQ=2,求四邊形MNQP面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案