已知三個(gè)點(diǎn)A(2,1),B(3,2),D(-1,4).

(1)求證:;

(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD的兩對(duì)角線所夾的銳角的余弦值.

答案:略
解析:

(1)證明:∵A(2,1)B(3,2)D(1,4),∴,

又∵

,即

(2)解:∵,四邊形ABCD為矩形,∴

設(shè)C點(diǎn)坐標(biāo)為(x,y),則,

解得C點(diǎn)坐標(biāo)為(05)

從而,,且,

設(shè)夾角為,則

∴求得矩形的兩條對(duì)角線所成的銳角的余弦值為


提示:

要證明,只需證.在的前提下,只要找點(diǎn)C使.而由兩向量夾角的余弦值可以得到兩對(duì)角線所夾銳角的余弦值.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知三個(gè)點(diǎn)A(2,1)、B(3,2)、D(-1,4),

(1)求證:;

(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線所夾的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材全解 高中數(shù)學(xué)必修4 B版(配人民教育出版社實(shí)驗(yàn)教科書) 人教版 B版 題型:044

已知三個(gè)點(diǎn)A(2,1),B(3,2),D(-1,4),

(1)求證:AB⊥AD;

(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo)并求矩形ABCD兩對(duì)角線所夾的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知三個(gè)點(diǎn)A(2,1)、B(3,2)、D(-1,4),

(1)求證:;

(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線所夾的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三個(gè)點(diǎn)A(2,1),B(3,2),D(-1,4).

(1)求證:;

(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線所夾的銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案