雙曲線x2-
y2
3
=1
的漸近線與圓x2+(y-4)2=r2(r>0)相切,則r=( 。
A、
2
B、
3
C、2
D、4
分析:先求出雙曲線x2-
y2
3
=1
的漸近線方程y=±
3
x
和圓心(0,4),再由點(diǎn)到直線的距離公式知
|0+4|
2
=r
,解得r的值.
解答:解:雙曲線x2-
y2
3
=1
的漸近線方程是y=±
3
x

圓心(0,4),
|0+4|
2
=r
,解得r=2.
故選C.
點(diǎn)評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知,橢圓C以雙曲線x2-
y23
=1
的焦點(diǎn)為頂點(diǎn),以雙曲線的頂點(diǎn)為焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(diǎn)(M、N不是左右頂點(diǎn)),且以線段MN為直徑的圓過點(diǎn)A(2,0),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•重慶一模)設(shè)雙曲線x2-
y23
=1
的左右焦點(diǎn)分別為F1、F2,P是直線x=4上的動(dòng)點(diǎn),若∠FPF2=θ,則θ的最大值為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以雙曲線x2-
y23
=1的右焦點(diǎn)為圓心,離心率為半徑的圓的方程是
(x-2)2+y2=4
(x-2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=8y的焦點(diǎn)到雙曲線x2-
y2
3
=1
的漸近線的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的圓心在y軸正半軸上,且與x軸相切,被雙曲線x2-
y2
3
=1
的漸近線截得的弦長為
3
,則圓C的方程為(  )

查看答案和解析>>

同步練習(xí)冊答案